On Detecting Low-pass Graph Signals under Partial Observations

Hoang-Son Nguyen, Hoi-To Wai

The Chinese University of Hong Kong

Motivation

Modern networks are large — only a **portion** of nodes are observed for processing by GSP:

• Partial observation destroys smoothness/ eigenvector structure of graph signals.

GSP on partial observed graph signals require **smooth (a.k.a. low pass)** signals:

• Non-low-pass signals \Rightarrow unexpected result!

Detecting Low-pass Signals with Partial Observations

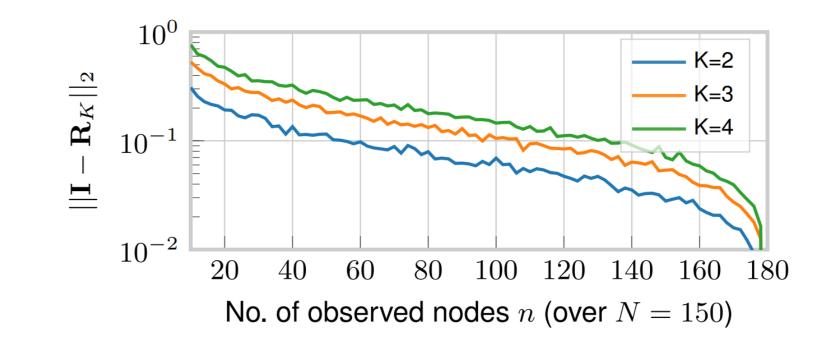
Covariance Matrix. For $\mathbf{C}_o = \mathbb{E}[\mathbf{y}_o \mathbf{y}_o^{\top}],$ $\mathbf{C}_o = \mathbf{V}_o h(\mathbf{\Lambda})^2 \mathbf{V}_o^{\top} + \sigma^2 \mathbf{I} = \mathbf{U}_o \mathbf{h}^2 \mathbf{U}_o^{\top} + \sigma^2 \mathbf{I},$ where $\mathbf{V}_o = \mathbf{E}_o \mathbf{V}, \mathbf{U}_o = \mathbf{E}_o \mathbf{U} \in \mathbb{R}^{n \times N}$. When the filter is *sharp* ($\eta_K \ll 1$ under \mathcal{T}_0),

 $\mathbf{C}_o - \sigma^2 \mathbf{I} =: \overline{\mathbf{C}}_o \approx \mathbf{U}_{o,K} \mathbf{h}_K^2 \mathbf{U}_{o,K}^\top,$

where $\mathbf{U}_{o,K}$ takes K left columns from \mathbf{U}_o .

The sample complexity is proportional to $\tilde{\sigma}^{-1}$, which is small when

the no. of blocks K is small ⇒ √K = O(1),
ℋ(S) is sharp and flat ⇒ η ≪ 1, γ ≈ 1,
no. of observed nodes n → N ⇒ ||I − R_K||₂ ≈ 0.



 \Rightarrow Q: Without knowing the graph, is a dataset of partially observed graph signals low-pass?

TL;DR

To detect **low-pass property** of **partially observed graph signals**, giving a **data-driven** certificate for downstream GSP tools.

Preliminaries

Graph is undirected and connected, has Nnodes, with adjacency \mathbf{A} , degree \mathbf{D} . Take as GSO the normalized Laplacian $\mathbf{L}_{norm} =$ $\mathbf{I} - \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2} = \mathbf{V}\mathbf{A}\mathbf{V}^{\top}$, where $\mathbf{V} =$ $[\mathbf{v}_1, ..., \mathbf{v}_N]$ are sorted by ascending eigenvalues. **Graph Filter.** Let $h(\mathbf{A}) = \text{diag}(h(\lambda_1),$ $..., h(\lambda_n))$ be the frequency response, **Observation 1:** Let the top-K eigenvectors of the sampled covariance $\widehat{\mathbf{C}}_o$ be $\widehat{\mathbf{Q}}_K$, then

$$\widehat{\mathbf{Q}}_K pprox \mathbf{U}_{o,K} = \mathbf{E}_o \mathbf{U}_K$$

Observation 2: Is \mathcal{H} low-pass? From [1],

- (\mathcal{T}_0) $\mathbf{U}_{o,K}$ corresponds to *row-sampled* ver. of $\mathbf{V}_K = [\mathbf{v}_1, ..., \mathbf{v}_K] \to \underline{\text{Clusterizable}}$
- (\mathcal{T}_1) $\mathbf{U}_{o,K}$ contains *row-sampled* version of $\{\mathbf{v}_{K+1}, ..., \mathbf{v}_N\} \rightarrow \underline{\text{Non-clusterizable}}$

Proposed Algorithm. define *K*-means score:

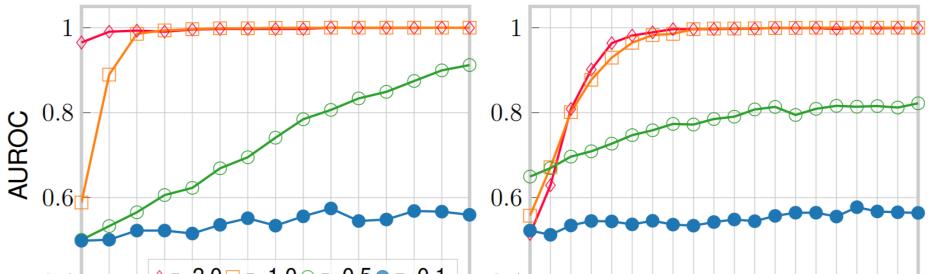
$$\mathbb{K}^{*}(\mathbf{N}) := \min_{\substack{\mathcal{C}_{1},...,\mathcal{C}_{K} \\ \subseteq \{1,...,n\}}} \sum_{k=1}^{K} \sum_{i \in \mathcal{C}_{k}} ||\mathbf{n}_{i}^{\text{row}} - \frac{1}{|\mathcal{C}_{k}|} \sum_{j \in \mathcal{C}_{k}} \mathbf{n}_{j}^{\text{row}}||_{2}^{2},$$
where $\mathbf{n}_{i}^{\text{row}}$ is the *i*th row of \mathbf{N} . **Observe**:
$$\mathbb{K}^{*}(\widehat{\mathbf{Q}}_{K}) = \begin{cases} \text{small} &, \text{ under } \mathcal{T}_{0}, \\ \text{large} &, \text{ under } \mathcal{T}_{1}. \end{cases}$$
If $K \ll n$, **comp. complexity** = $\mathcal{O}(n^{2}(K+M))$,
$$\text{Complexity} = \mathcal{O}\left(\underbrace{n^{2}M}_{k} + \underbrace{n^{2}K}_{k} + \underbrace{2^{K/\epsilon}Kn}_{k}\right).$$

Fig. 1. Monte-Carlo simulation of $||\mathbf{I} - \mathbf{R}_K||_2$ as $n \to N$, where the corresponding $\mathbf{U}_{o,K} = \mathbf{Q}_K \mathbf{R}_K$ is from \mathbf{L}_{norm} of a graph generated by $SBM(180, K, \log N/N, 4 \log N/N)$, with $K \in \{2, 3, 4\}$.

Numerical Experiments

Graphs of N = 150 nodes and K = 3 blocks are generated from SBM, with n nodes selected uniformly at random for partial observations.

Detecting Low-pass Graph Signals. We test Alg. 1 in distinguishing signals by a low-pass filter $e^{-\tau \mathbf{L}_{\text{norm}}}$ vs. signals by a non-low-pass filter $e^{\tau \mathbf{L}_{\text{norm}}}$ (η decreases as $\tau > 0$ increases) \Rightarrow when filter is sharp, performance is **insensitive** to n/N.



$$\mathcal{H}(\mathbf{L}_{\text{norm}}) = \sum_{t=0}^{T} h_t \mathbf{L}_{\text{norm}}^t = \mathbf{V} h(\mathbf{\Lambda}) \mathbf{V}^T,$$

Assume: $|h(\lambda_i)| \neq |h(\lambda_j)|, i \neq j$. By sorting $\{|h(\lambda_i)|\}_{i=1}^N$ as $|h_1| > ... > |h_N|, \mathcal{H}(\mathbf{L}_{norm}) = \mathbf{U}\mathbf{h}\mathbf{U}^\top$, with $\mathbf{h} = \text{diag}(h_1, ..., h_N)$, \mathbf{U} is column re-ordered from \mathbf{V} .

Partially Observed Signals. Observed data are *filtered graph signals* with only the first *n* nodes retained,

 $\mathbf{y}_{o} = [\mathbf{I}_{n \times n} \ \mathbf{0}_{n \times (N-n)}] \mathbf{y} =: \mathbf{E}_{o} \mathbf{y}$ where $\mathbf{y} = \mathcal{H}(\mathbf{L}_{norm}) \mathbf{x} + \mathbf{w}$. Assume stationary signals s.t. $\mathbb{E}[\mathbf{x}] = \mathbf{0}, \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] = \mathbf{I}, \mathbb{E}[\mathbf{w}] =$ $\mathbf{0}, \mathbb{E}[\mathbf{w}\mathbf{w}^{\top}] = \sigma^{2}\mathbf{I}$. **Notations.** $\mathbf{R}_{K} \in \mathbb{R}^{K \times K}$ is an upper triangular matrix in QR factorization of $\mathbf{U}_{o,K} =$ $\sqrt{N/n}\mathbf{Q}_{K}\mathbf{R}_{K}$. $\mathcal{T}_{gnd} \in {\mathcal{T}_{0}, \mathcal{T}_{1}}$ is the groundtruth hypothesis. $G \sim \text{SBM}(N, K, r, p)$ refers to SBM with N nodes, K blocks, r (resp. r+p) is inter (resp. intra) connectivity.

Problem Definition

 $\operatorname{torm} \mathbf{C}_o$ find \mathbf{Q}_K find $\mathbb{K}^*(\mathbf{Q}_K)$

Sample Complexity Analysis

 $\underline{\mathbf{A1:}} \text{ W.h.p., there is } \rho_{\text{gap}} \text{ such that } \lambda_{n-K-1}(\overline{\mathbf{C}}_o) - \lambda_{n-K}(\overline{\mathbf{C}}_o) - ||\widehat{\mathbf{C}}_o - \overline{\mathbf{C}}_o||_2 \ge \rho_{\text{gap}} > 0. \\ \underline{\mathbf{A2:}} \quad \mathcal{H}(\mathbf{L}_{\text{norm}}) \text{ is at least } \eta \text{-sharp and } \gamma \text{-flat:} \\ \frac{\max_{i=K+1,\dots,N}|h_i|}{\min_{i=1,\dots,K}|h_i|} \le \eta < 1, \quad \frac{\max_{1\le i\le K}h_i^2}{\min_{1\le j\le K}h_j^2} \le \gamma. \\ \underline{\mathbf{A3:}} \quad G \sim \text{SBM}(N, K, r, p) \text{ with } p \ge r > 0, p/K + r \ge (32 \log N + 1)/N. \\ \underline{\mathbf{A4:}} \quad \text{W.h.p., there is } c_{\text{SBM}} > 0 \text{ such that} \\ \min_{l=K+1,\dots,N} \mathbb{K}^*(\mathbf{v}_l) \ge c_{\text{SBM}}. \\ \end{cases}$

Theorem 1: Sample Complexity

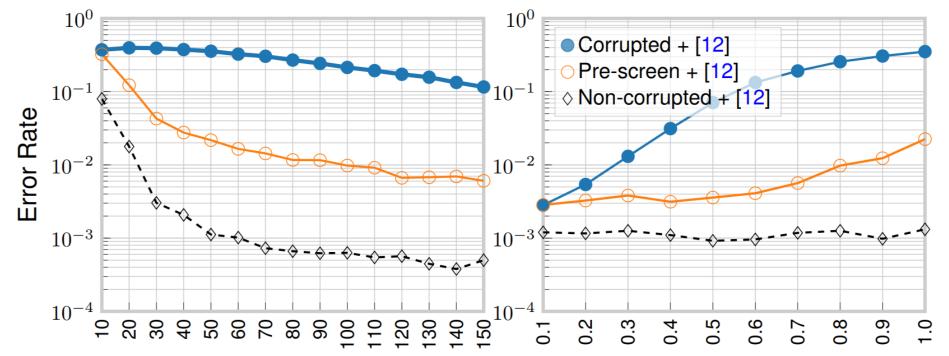
(A1-4) Let
$$\tilde{\delta}_{\min} := \min \left\{ \delta - \sqrt{\frac{N}{n}} \sqrt{\frac{1225K^3 \log N}{p(N-K)}}, \sqrt{\frac{N}{n}} \sqrt{c_{\text{SBM}} - \frac{2450K^3 \log N}{p(N-K)}} - \delta \right\} > 0,$$

 $\tilde{\sigma} := \frac{\rho_{\text{gap}}(\tilde{\delta}_{\min} - \sqrt{K}(||\mathbf{I} - \mathbf{R}_K||_2 + 6\gamma\eta))}{2\sqrt{K}} > \sigma^2.$
If the number of samples M satisfies

0.4 - 0.4 - 0.1 = 0.1	0.4
10 10 100 1100 1100 1100 1100 1100 110	$\begin{array}{c} 1000\\$
No. of observed nodes \boldsymbol{n}	No. of samples M

Fig. 2. Comparing low-pass detection performance against (left) no. of observed nodes $n \ (M = 100)$, (right) no. of observed samples $M \ (n = 100)$. The τ setting adjusts the sharpness of graph filters $e^{-\tau \mathbf{L}_{\text{norm}}}$ or $e^{\tau \mathbf{L}_{\text{norm}}}$.

Application: Robustifying Blind Community Detection. We use Alg. 1 to pre-screen potentially corrupted graph signals before applying [2] to detect communities from partial observations. Normal graph signals are generated from $\mathcal{H}(\mathbf{L}_{norm}) =$ $(\mathbf{I} - 0.5\mathbf{L}_{norm})^3$, where 10% of samples are *corrupted* in bursts, such that p_s -fraction of nodal observations are replaced with Gaussian noise. To pre-screen, we apply Alg. 1 on small batches from $M = 10^3$ samples, and delete the batches detected as non-low-pass.



Given $\{\mathbf{y}_{o,1}, \dots, \mathbf{y}_{o,M}\}$, is the graph filter $\mathcal{H}(\mathbf{L}_{norm})$ **K-low-pass or not** (cf. Def. 1)? • \mathcal{T}_0 : $\mathcal{H}(\mathbf{L}_{norm})$ is K-low-pass • \mathcal{T}_1 : $\mathcal{H}(\mathbf{L}_{norm})$ is not K-low-pass

Def. 1: Low-pass Graph Filter A graph filter $\mathcal{H}(\cdot)$ is K-low pass if $\eta_K = \frac{\max_{i=K+1,...,N} |h(\lambda_i)|}{\min_{i=1,...,K} |h(\lambda_i)|} < 1,$ K is cut-off frequency, and η_K is sharpness.

 $\sqrt{M}/\log M = \Omega(1/\tilde{\sigma}),$ then $\mathbb{P}(\widehat{\mathcal{T}} = \mathcal{T}_{\text{gnd}}) \ge 1 - 4/N - 5/M.$

Interpretations. When $\tilde{\delta}_{\min} > 0$ and $\tilde{\sigma} > 0$, then with a sufficiently large M, Algorithm 1 will return a correct detection w.h.p. as $N, M \to \infty$.

• To satisfy $\tilde{\delta}_{\min} > 0$, as $c_{\text{SBM}} = \Theta(1)$, we need $\delta = \mathcal{O}(\sqrt{\frac{N}{n}}).$

• To satisfy $\tilde{\sigma} > 0$, (i) noise level σ^2 is sufficiently small, and (ii) filter constant $\gamma \eta$, and $\|\mathbf{I} - \mathbf{R}_K\|_2$ are smaller than $\mathcal{O}(\tilde{\delta}_{\min})$ ($\|\mathbf{I} - \mathbf{R}_K\|_2 \searrow 0$ as $n \to N$; see Fig. 1). No. of observed nodes n Corrupted portion of a signal p_s

Fig. 3. Comparing blind community detection performance vs. (left) no. of observed nodes n ($p_s = 1$), (right) corrupted portion of signals p_s (n = 50).

References

[1] Zhang et al., "Detecting Low Pass Graph Signals via Spectral Pattern: Sampling Complexity and Applications", IEEE TSP, 2024.
[2] Wai et al., "Community inference from partially observed graph signals: Algorithms and analysis," IEEE TSP, 2022.