On Detecting Low-pass Graph Signals under Partial Observations

Hoang-Son Nguyen, Hoi-To Wai

The Chinese University of Hong Kong

Motivation

• *Partial observation* destroys smoothness/ eigenvector structure of graph signals.

Modern networks are large — only a **portion** of nodes are observed for processing by GSP:

Graph is undirected and connected, has *N* nodes, with adjacency **A**, degree **D**. Take as GSO the normalized Laplacian \mathbf{L}_{norm} = $\mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\top$, where $\mathbf{V} =$ $[\mathbf{v}_1, ..., \mathbf{v}_N]$ are sorted by ascending eigenvalues. **Graph Filter.** Let $h(\Lambda) = diag(h(\lambda_1))$, $h(\lambda_n)$ be the frequency response,

GSP on partial observed graph signals require **smooth (a.k.a. low pass)** signals:

•Non-low-pass signals ⇒ unexpected result!

⇒ **Q: Without knowing the graph, is a dataset of partially observed graph signals low-pass?**

TL;DR

Assume: $|h(\lambda_i)| \neq |h(\lambda_j)|$, $i \neq j$. By sorting $\{|h(\lambda_i)|\}_{i=1}^N$ as $|h_1| > ... > |h_N|$, $\mathcal{H}(\mathbf{L}_{norm}) =$ $\mathbf{U}\mathbf{h}\mathbf{U}^{\top}$, with $\mathbf{h} = \text{diag}(h_1, ..., h_N)$, \mathbf{U} is column re-ordered from **V**.

To detect **low-pass property** of **partially observed graph signals**, giving a **data-driven** certificate for downstream GSP tools.

Preliminaries

to SBM with *N* nodes, *K* blocks, *r* (resp. $r+p$) is inter (resp. intra) connectivity.

$$
\mathcal{H}(\mathbf{L}_{\text{norm}}) = \sum_{t=0}^{T} h_t \mathbf{L}_{\text{norm}}^t = \mathbf{V} h(\mathbf{\Lambda}) \mathbf{V}^T,
$$

Partially Observed Signals. Observed data are *filtered graph signals* with only the first *n* nodes retained,

 $\mathbf{y}_o = [\mathbf{I}_{n \times n} \ \mathbf{0}_{n \times (N-n)}] \mathbf{y} =: \mathbf{E}_o \mathbf{y}$ where $\mathbf{y} = \mathcal{H}(\mathbf{L}_{norm})\mathbf{x} + \mathbf{w}$. Assume *stationary* $signals$ s.t. $\mathbb{E}[\mathbf{x}] = \mathbf{0}, \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] = \mathbf{I}, \mathbb{E}[\mathbf{w}] =$ $\mathbf{0}, \mathbb{E}[\mathbf{w}\mathbf{w}^{\top}] = \sigma^2 \mathbf{I}.$ **Notations.** $\mathbf{R}_K \in \mathbb{R}^{K \times K}$ is an upper triangular matrix in QR factorization of $\mathbf{U}_{o,K}$ = $\sqrt{N/n} \mathbf{Q}_K \mathbf{R}_K$. $\mathcal{T}_{\text{gnd}} \in {\mathcal{T}_0, \mathcal{T}_1}$ is the groundtruth hypothesis. $G \sim \text{SBM}(N, K, r, p)$ refers

Problem Definition

form \mathbf{C}_o find \mathbf{Q}_K

 $\sqrt{M/\log M} = \Omega(1/\tilde{\sigma}),$ then $\mathbb{P}(\widehat{\mathcal{T}})$ $\frac{1}{\sqrt{2\pi}}$ $=$ \mathcal{T}_{gnd}) $\geq 1 - 4/N - 5/M$.

Interpretations. When $\tilde{\delta}_{\min} > 0$ and $\tilde{\sigma} > 0$, then with a sufficiently large *M*, Algorithm 1 will return a correct detection w.h.p. as $N, M \to \infty$.

- To satisfy $\delta_{\min} > 0$, as $c_{\text{SBM}} = \Theta(1)$, we need $\delta = \mathcal{O}($ \sqrt{N} *n*).
- To satisfy $\tilde{\sigma} > 0$, (i) noise level σ^2 is sufficiently small, and (ii) filter constant $\gamma\eta$, and $||\mathbf{I} - \mathbf{R}_K||_2$ are smaller than $\mathcal{O}(\tilde{\delta}_{\text{min}})$ ($||\mathbf{I} - \mathbf{R}_K||_2 \searrow 0$ as $n \rightarrow N$; see Fig. 1).

Corrupted portion of a signal p_s No. of observed nodes n

Fig. 3. Comparing blind community detection performance vs. (left) no. of observed nodes $n (p_s = 1)$, (right) corrupted portion of signals $p_s (n = 50)$.

Detecting Low-pass Signals with Partial Observations

Covariance Matrix. For $C_o = \mathbb{E}[\mathbf{y}_o\mathbf{y}_o^\top]$ $\begin{bmatrix} | \\ o \end{bmatrix}$ $\mathbf{C}_o = \mathbf{V}_o h(\mathbf{\Lambda})^2 \mathbf{V}_o^\top + \sigma^2 \mathbf{I} = \mathbf{U}_o \mathbf{h}^2 \mathbf{U}_o^\top + \sigma^2 \mathbf{I},$ where $\mathbf{V}_o = \mathbf{E}_o \mathbf{V}$, $\mathbf{U}_o = \mathbf{E}_o \mathbf{U} \in \mathbb{R}^{n \times N}$. When the filter is *sharp* $(\eta_K \ll 1 \text{ under } \mathcal{T}_0),$

 $\mathbf{C}_o - \sigma^2 \mathbf{I} =: \overline{\mathbf{C}}_o \approx \mathbf{U}_{o,K} \mathbf{h}_K^2 \mathbf{U}_{o,K}^\top,$

where $U_{o,K}$ takes K left columns from U_o .

The sample complexity is proportional to $\tilde{\sigma}^{-1}$, which is small when

 \bullet the no. of blocks K is small \Rightarrow √ $K = \mathcal{O}(1),$ • $\mathcal{H}(\mathbf{S})$ is *sharp and flat* $\Rightarrow \eta \ll 1, \gamma \approx 1$, • no. of observed nodes $n \to N \Rightarrow ||\mathbf{I} - \mathbf{R}_K||_2 \approx 0$.

Graphs of $N = 150$ nodes and $K = 3$ blocks are generated from SBM, with *n* nodes selected uniformly at random for partial observations.

Observation 1: Let the top-*K* eigenvectors of the sampled covariance **C** $\overline{}$ *^o* be **Q** b *^K*, then

$$
\widehat{\mathbf{Q}}_K \approx \mathbf{U}_{o,K} = \mathbf{E}_o \mathbf{U}_K
$$

Observation 2: Is H low-pass? From [1],

- \bullet (\mathcal{T}_0) $\mathbf{U}_{o,K}$ corresponds to *row-sampled* ver. of $\mathbf{V}_K = [\mathbf{v}_1, ..., \mathbf{v}_K] \rightarrow$ Clusterizable
- \bullet (\mathcal{T}_1) $\mathbf{U}_{o,K}$ contains *row-sampled* version of $\{v_{K+1},...,v_N\} \rightarrow \text{Non-clustering}$

Proposed Algorithm. define *K*-means score:

$$
\mathbb{K}^*(\mathbf{N}) := \min_{\substack{\mathcal{C}_1,\dots,\mathcal{C}_K \\ \subseteq \{1,\dots,n\} \\ k=1}} \sum_{i \in \mathcal{C}_k}^{\text{row}} ||\mathbf{n}_i^{\text{row}} - \frac{1}{|\mathcal{C}_k|} \sum_{j \in \mathcal{C}_k} \mathbf{n}_j^{\text{row}} ||_2^2,
$$
\nwhere $\mathbf{n}_i^{\text{row}}$ is the *i*th row of **N**. Observe:
\n
$$
\mathbb{K}^*(\widehat{\mathbf{Q}}_K) = \begin{cases} \text{small} & \text{, under } \mathcal{T}_0, \\ \text{large} & \text{, under } \mathcal{T}_1. \end{cases}
$$
\nIf $K \ll n$, **comp. complexity** = $\mathcal{O}(n^2(K+M))$,
\nComplexity = $\mathcal{O}\left(\frac{n^2M}{n^2} + \frac{n^2K}{n^2} + \frac{2^{K/\epsilon}Kn}{n^2}$.

Fig. 1. Monte-Carlo simulation of $||\mathbf{I} - \mathbf{R}_K||_2$ as $n \to N$, where the corresponding $U_{o,K} = Q_K R_K$ is from L_{norm} of a graph generated by SBM(180, K, $\log N/N$, 4 $\log N/N$), with $K \in \{2, 3, 4\}$.

Sample Complexity Analysis

A1: W.h.p., there is ρ_{gap} such that $\lambda_{n-K-1}(\overline{\mathbf{C}}_o)$ – $\lambda_{n-K}(\mathbf{C}_o) - ||\mathbf{C}$ $\overline{}$ $\rho_o - C_o ||_2 \ge \rho_{\rm gap} > 0.$ **A2:** $\mathcal{H}(\mathbf{L}_{norm})$ is at least *η*-sharp and *γ*-flat: $\max_{i=K+1,...,N} |h_i|$ $\frac{\max_{i=K+1,...,N}|n_i|}{\min_{i=1,...,K}|h_i|} \leq \eta < 1,$ max_{1≤*i*≤*K*} h_i^2 *i* $\min_{1\leq j \leq K} h_j^2$ *j* ≤ *γ*. **A3:** $G \sim \text{SBM}(N, K, r, p)$ with $p \geq r > 0$, $p/K + p$ $r \geq (32 \log N + 1)/N$. $\underline{A4:}$ W.h.p., there is $c_{SBM} > 0$ such that $\min_{l=K+1,\dots,N} \mathbb{K}^*(\mathbf{v}_l) \geq c_{\text{SBM}}.$

Theorem 1: Sample Complexity

(A1-4) Let
$$
\tilde{\delta}_{\min} := \min \left\{ \delta - \sqrt{\frac{N}{n}} \sqrt{\frac{1225K^3 \log N}{p(N-K)}}, \sqrt{\frac{N}{n}} \sqrt{c_{\text{SBM}} - \frac{2450K^3 \log N}{p(N-K)}} - \delta \right\} > 0,
$$

$$
\tilde{\sigma} := \frac{\rho_{\text{gap}}(\tilde{\delta}_{\min} - \sqrt{K}(||\mathbf{I} - \mathbf{R}_K||_2 + 6\gamma \eta))}{2\sqrt{K}} > \sigma^2.
$$
If the number of samples *M* satisfies

Fig. 2. Comparing low-pass detection performance against (left) no. of observed nodes $n (M = 100)$, (right) no. of observed samples $M (n = 100)$. The τ setting adjusts the sharpness of graph filters $e^{-\tau L_{\text{norm}}}$ or $e^{\tau L_{\text{norm}}}$.

Numerical Experiments

Detecting Low-pass Graph Signals. We test Alg. 1 in distinguishing signals by a low-pass filter *e* [−]*τ***L**norm vs. signals by a non-low-pass filter *e ^τ***L**norm (*η* decreases as $\tau > 0$ increases) \Rightarrow when filter is **sharp**, performance is **insensitive** to *n/N*.

Application: Robustifying Blind Community Detection. We use Alg. 1 to pre-screen potentially corrupted graph signals before applying [2] to detect communities from partial observations. Normal graph signals are generated from $\mathcal{H}(\mathbf{L}_{norm}) =$ (**I** − 0*.*5**L**norm) 3 , where 10% of samples are *corrupted* in bursts, such that p_s -fraction of nodal observations are replaced with Gaussian noise. To pre-screen, we apply Alg. 1 on small batches from $M = 10^3$ samples, and delete the batches detected as non-low-pass.

Given $\{y_{o,1},...,y_{o,M}\}$, is the graph filter H(**L**norm) **K-low-pass or not** (cf. Def. 1)? \bullet \mathcal{T}_0 : $\mathcal{H}(\mathbf{L}_{\text{norm}})$ is K-low-pass \blacktriangleright \mathcal{T}_1 : $\mathcal{H}(\mathbf{L}_{\text{norm}})$ is not K-low-pass

References

[1] Zhang et al., "Detecting Low Pass Graph Signals via Spectral Pattern: Sampling Complexity and Applications", IEEE TSP, 2024. [2] Wai et al., "Community inference from partially observed graph signals: Algorithms and analysis," IEEE TSP, 2022.