On Detecting Low-pass Graph Signals under Partial Observations

Motivation

Modern networks are large — only a portion
of nodes are observed for processing by GSP:

o Partial observation destroys smoothness/
eigenvector structure of graph signals.

GSP on partial observed graph signals require
smooth (a.k.a. low pass) signals:

e Non-low-pass signals = unexpected result!

= Q: Without knowing the graph, is
a dataset of partially observed graph
signals low-pass?

To detect low-pass property of par-

tially observed graph signals, giving
a data-driven certificate for downstream
GSP tools.

Preliminaries

Graph is undirected and connected, has N
nodes, with adjacency A, degree D. Take
as GSO the normalized Laplacian Lo, =
I - DY2AD Y2 = VAV where V =
V1, ..., vy| are sorted by ascending eigenvalues.
Graph Filter. Let h(A) = diag(h(\),
..., h(A,)) be the frequency response,

H(LHOHH) Zt 0 hthorm — Vh(A)VT7

Assume: |h(N)| # |h(N))], @ # j. By sorting
{Ih(\)| Y, as |hy| > ... > |h], H(Lpom) =
UhU', with h = diag(hy, ..., hx), U is column

re-ordered trom V.

Partially Observed Signals. Observed
data are filtered graph signals with only the
first n nodes retained,

Yo = [Inxn Onx(N—n)]y =: Koy

where y = H(Lyom )X +W. Assume stationary
signals s.t. E[x| = 0,E[xx'] = I, Ejw| =
0,Ejww'] = o°L

Notations. Ry € R5*% is an upper tri-
angular matrix in QR factorization of U, =
VIN/nQrRKk. Teana € {70, Ti} is the ground-
truth hypothesis. G ~ SBM(N, K, r, p) refers
to SBM with NV nodes, K blocks, r (resp. r+p)
is inter (resp. intra) connectivity.

Problem Definition

Given {yo,1,..-, Yo}, is the graph filter

H(Lyorm) K-low-pass or not (. Def. 1)7

o To: H(Lyom) is K-low-pass
o T H(Lyom) is not K-low-pass

Def. 1: Low-pass Graph Filter

A graph filter H(-) is K-low pass if

- MaXj=g+1,....N |h(>\z)‘
NIk = :
MINy=1,... K ‘h()‘z)‘

K is cut-off frequency, and ng is sharpness.
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Covariance Matrix. For C, = 43[y0y2]7
C, = V,h(A)*V,) 4+ 0°I = U,h*U, + o1,

where V, = E,V, U, = E,U € R, When the
filter is sharp (nxg < 1 under 7y),

C,—c’I=C,~U,xh; U,

where U, g takes K lett columns from U,,.
Observation 1: Let the top-K eigenvectors of the
sampled covariance C, be Qg, then

Qi ~ Uy = E,Ug
Observation 2: Is H low-pass? From [1],

* (7y) U, i corresponds to row-sampled ver. of
Vi = |vy, ..., vi] — Clusterizable

o (71) U, i contains row-sampled version of
{Vii1,..., v} — Non-clusterizable

Proposed Algorithm. define A'-means score:

K*(N) — > >*\ TOW Z TOW
N) = iy, AP

C{la ’n} k=1 1€Cy ]ECk

where n;*" is the ¢th row of N. Observe:

oA small , under 7y,
K*(Qk) = { -

large | under 7j.

If K < n, comp. complexity = O(n*(K+ M)),

Complexity = O | @°M, + eI + 28/ K,

form C, ﬁnd Q x  find K*( QK

Sample Complexity Analysis

A1: W.hop., there is py,, such that A\, g 1(C,) —
Ao 1(C0) = 18 = Tolls > pay > 0.
A2: H(L,om) is at least - sharp and ~-flat:
..... il <n<l maxi<j< h; < .

mMiN;=1,... K ’hz| mlﬂ1<]<K h

A3: G ~SBM(N, K, r,p) Wlthp >1r >0 p/K+
r > (32log N +1)/N.
A4: W.hop. there is cggpyy > 0 such that

Theorem 1: Sample Complexity

(A1-4) Let O = mMmin {5 — \/ \/1225K310gN,

N 2450 K3 log N
\/%\/CSBM p(N—K) 5} > Oa

~ pgap<5min o \R(HI o RKHQ T 6777))
2V K

If the number of samples M satisfies

vV M/log M = Q(1/3).
then P(T = Tona) > 1—4/N —5/M.

> 02.

Interpretations. When Smm > (0 and ¢ > 0,
then with a sufliciently large M, Algorithm 1 will
return a correct detection w.h.p. as N, M — oo.

o To satisfy 0., > 0, as cspy = O(1), we need

5=0(,/Y).

o To satisfy & > 0, (i) noise level o is sufficiently
small, and (ii) filter constant yn, and ||I — Rg||2

are smaller than O (i) (||T — R[> \ 0 as
n — N; see Fig. 1).

The sample complexity is proportional to 6!, which
is small when

o the no. of blocks K is small = v K = O(1),
o H(S) is sharp and flat = n < 1,y =1,
® no. of observed nodes n -+ N = ||I — Rgl||s &

10° -
N — K=2
\\\_\ K=3

1071 = —— =4

10—2 ) | | | | | \ | |
20 40 60 80 100 120 140 160 180

No. of observed nodes n (over N = 150)

IT— R|l2

Fig. 1. Monte-Carlo simulation of ||[I — Rx||2 as n — N, where the
corresponding U, k = QrgRk 1s from Lporm of a graph generated by
SBM(180, K,log N/N,4log N/N), with K € {2,3,4}.

Numerical Experiments

Graphs of NV = 150 nodes and K = 3 blocks are gen-
erated from SBM, with n nodes selected uniformly
at random for partial observations.

Detecting Low-pass Graph Signals. We test
Alg. 1 in distinguishing signals by a low-pass filter
el v signals by a non-low-pass filter e™om (n
decreases as 7 > 0 increases) = when filter is sharp,

performance is insensitive to n/N.
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Fig. 2. Comparing low-pass detection performance against (left) no. of
observed nodes n (M = 100), (right) no. of observed samples M (n = 100).
The 7 setting adjusts the sharpness of graph filters e ~7Lnorm or ¢7lmorm

Application: Robustifying Blind Commu-
nity Detection. We use Alg. 1 to pre-screen
potentially corrupted graph signals before applying
2] to detect communities from partial observations.
Normal graph signals are generated from H (L) =
(I —0.5Ly,0m)?, where 10% of samples are corrupted
in bursts, such that ps-fraction of nodal observations
are replaced with Gaussian noise. To pre-screen, we
apply Alg. 1 on small batches from M = 10° sam-

ples, and delete the batches detected as non-low-pass.
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Fig. 3. Comparing blind community detection performance vs. (left) no. of
observed nodes n (ps = 1), (right) corrupted portion of signals ps (n = 50).
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