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Motivation

Modern networks are large — only a portion
of nodes are observed for processing by GSP:
• Partial observation destroys smoothness/

eigenvector structure of graph signals.
GSP on partial observed graph signals require
smooth (a.k.a. low pass) signals:
• Non-low-pass signals ⇒ unexpected result!
⇒ Q: Without knowing the graph, is
a dataset of partially observed graph
signals low-pass?

TL;DR

To detect low-pass property of par-
tially observed graph signals, giving
a data-driven certificate for downstream
GSP tools.

Preliminaries

Graph is undirected and connected, has N
nodes, with adjacency A, degree D. Take
as GSO the normalized Laplacian Lnorm =
I − D−1/2AD−1/2 = VΛV⊤, where V =
[v1, ..., vN ] are sorted by ascending eigenvalues.
Graph Filter. Let h(Λ) = diag(h(λ1),
..., h(λn)) be the frequency response,

H(Lnorm) =
∑T

t=0 htLt
norm = Vh(Λ)VT ,

Assume: |h(λi)| ̸= |h(λj)|, i ̸= j. By sorting
{|h(λi)|}N

i=1 as |h1| > ... > |hN |, H(Lnorm) =
UhU⊤, with h = diag(h1, ..., hN), U is column
re-ordered from V.
Partially Observed Signals. Observed
data are filtered graph signals with only the
first n nodes retained,

yo = [In×n 0n×(N−n)]y =: Eoy
where y = H(Lnorm)x+w. Assume stationary
signals s.t. E[x] = 0,E[xx⊤] = I, E[w] =
0,E[ww⊤] = σ2I.
Notations. RK ∈ RK×K is an upper tri-
angular matrix in QR factorization of Uo,K =√

N/nQKRK. Tgnd ∈ {T0, T1} is the ground-
truth hypothesis. G ∼ SBM(N, K, r, p) refers
to SBM with N nodes, K blocks, r (resp. r+p)
is inter (resp. intra) connectivity.

Problem Definition

Given {yo,1, ..., yo,M}, is the graph filter
H(Lnorm) K-low-pass or not (cf. Def. 1)?
• T0: H(Lnorm) is K-low-pass
• T1: H(Lnorm) is not K-low-pass

Def. 1: Low-pass Graph Filter

A graph filter H(·) is K-low pass if

ηK = maxi=K+1,...,N |h(λi)|
mini=1,...,K |h(λi)|

< 1,

K is cut-off frequency, and ηK is sharpness.
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Covariance Matrix. For Co = E[yoy⊤
o ],

Co = Voh(Λ)2V⊤
o + σ2I = Uoh2U⊤

o + σ2I,
where Vo = EoV, Uo = EoU ∈ Rn×N . When the
filter is sharp (ηK ≪ 1 under T0),

Co − σ2I =: Co ≈ Uo,Kh2
KU⊤

o,K,

where Uo,K takes K left columns from Uo.
Observation 1: Let the top-K eigenvectors of the
sampled covariance Ĉo be Q̂K, then

Q̂K ≈ Uo,K = EoUK

Observation 2: Is H low-pass? From [1],
• (T0) Uo,K corresponds to row-sampled ver. of

VK = [v1, ..., vK] → Clusterizable
• (T1) Uo,K contains row-sampled version of

{vK+1, ..., vN} → Non-clusterizable

Proposed Algorithm. define K-means score:

K∗(N) := min
C1,...,CK

⊆{1,...,n}

K∑
k=1

∑
i∈Ck

||nrow
i − 1

|Ck|
∑
j∈Ck

nrow
j ||22,

where nrow
i is the ith row of N. Observe:

K∗(Q̂K) =

{
small , under T0,

large , under T1.

If K ≪ n, comp. complexity = O(n2(K +M)),

Complexity = O

 n2M︸︷︷︸
form Ĉo

+ n2K︸︷︷︸
find Q̂K

+ 2K/ϵKn︸ ︷︷ ︸
find K∗(Q̂K)

 .

Sample Complexity Analysis

A1: W.h.p., there is ρgap such that λn−K−1(Co) −
λn−K(Co) − ||Ĉo − Co||2 ≥ ρgap > 0.
A2: H(Lnorm) is at least η-sharp and γ-flat:
maxi=K+1,...,N |hi|

mini=1,...,K |hi| ≤ η < 1, max1≤i≤K h2
i

min1≤j≤K h2
j

≤ γ.
A3: G ∼ SBM(N, K, r, p) with p ≥ r > 0, p/K +
r ≥ (32 log N + 1)/N .
A4: W.h.p., there is cSBM > 0 such that
minl=K+1,...,N K∗(vl) ≥ cSBM.

Theorem 1: Sample Complexity

(A1-4) Let δ̃min := min
{

δ −
√

N
n

√
1225K3 log N

p(N−K) ,√
N
n

√
cSBM − 2450K3 log N

p(N−K) − δ
}

> 0,

σ̃ := ρgap(δ̃min −
√

K(||I − RK||2 + 6γη))
2
√

K
> σ2.

If the number of samples M satisfies√
M/ log M = Ω(1/σ̃),

then P(T̂ = Tgnd) ≥ 1 − 4/N − 5/M .

Interpretations. When δ̃min > 0 and σ̃ > 0,
then with a sufficiently large M , Algorithm 1 will
return a correct detection w.h.p. as N, M → ∞.
• To satisfy δ̃min > 0, as cSBM = Θ(1), we need

δ = O(
√

N
n ).

• To satisfy σ̃ > 0, (i) noise level σ2 is sufficiently
small, and (ii) filter constant γη, and ∥I − RK∥2
are smaller than O(δ̃min) (∥I − RK∥2 ↘ 0 as
n → N ; see Fig. 1).

The sample complexity is proportional to σ̃−1, which
is small when
• the no. of blocks K is small ⇒

√
K = O(1),

• H(S) is sharp and flat ⇒ η ≪ 1, γ ≈ 1,
• no. of observed nodes n → N ⇒ ∥I − RK∥2 ≈ 0.

Numerical Experiments

Graphs of N = 150 nodes and K = 3 blocks are gen-
erated from SBM, with n nodes selected uniformly
at random for partial observations.
Detecting Low-pass Graph Signals. We test
Alg. 1 in distinguishing signals by a low-pass filter
e−τLnorm vs. signals by a non-low-pass filter eτLnorm (η
decreases as τ > 0 increases) ⇒ when filter is sharp,
performance is insensitive to n/N .

Application: Robustifying Blind Commu-
nity Detection. We use Alg. 1 to pre-screen
potentially corrupted graph signals before applying
[2] to detect communities from partial observations.
Normal graph signals are generated from H(Lnorm) =
(I − 0.5Lnorm)3, where 10% of samples are corrupted
in bursts, such that ps-fraction of nodal observations
are replaced with Gaussian noise. To pre-screen, we
apply Alg. 1 on small batches from M = 103 sam-
ples, and delete the batches detected as non-low-pass.
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