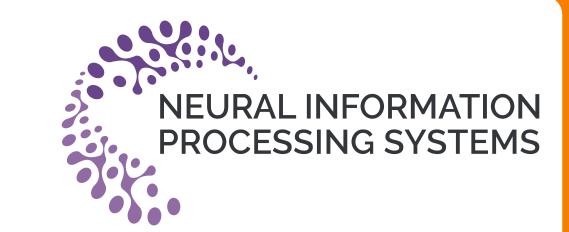


Diverse Influence Component Analysis: A Geometric Approach to Nonlinear Mixture Identifiability

Hoang-Son Nguyen, Xiao Fu

School of Electrical Engineering and Computer Science, Oregon State University



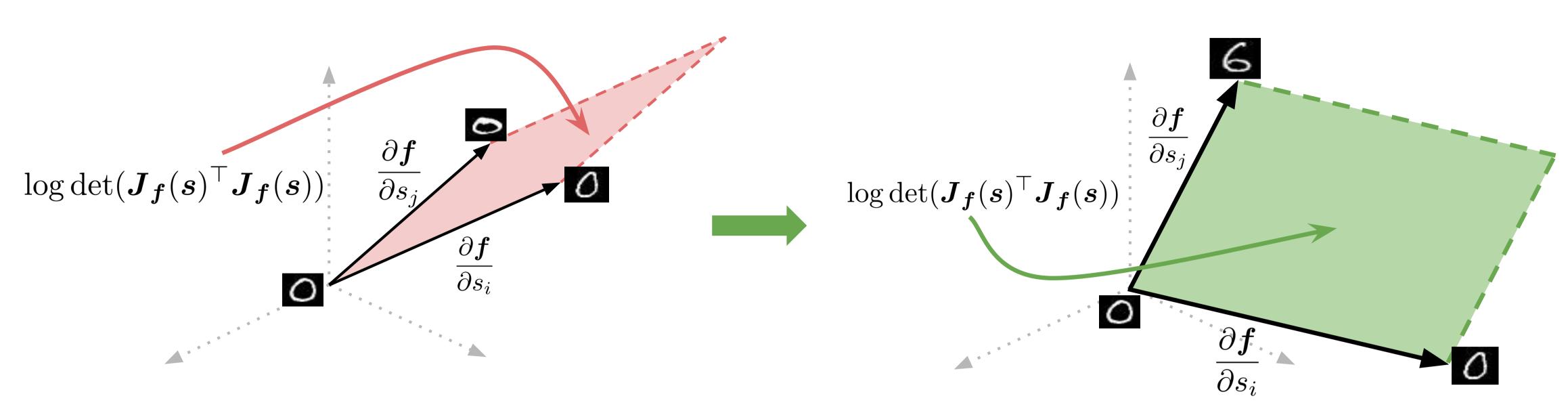


Illustration: DICA attempts to find representation s s.t. $\partial x/\partial s_i$ and $\partial x/\partial s_j$ spanning quite different directions, inducing larger convex hull volume (under constraints).

Nonlinear Mixture Model Identification (NMMI) 🚱

A diffeomorphism mapping latent s to a d-dim. data manifold embedded in \mathbb{R}^m :

$$\boldsymbol{x} = \boldsymbol{f}(\boldsymbol{s}), \boldsymbol{s} \in \mathbb{R}^d, \boldsymbol{x} \in \mathbb{R}^m, d \le m$$
 (1)

- $s = [s_1, s_2, ..., s_d] \sim p(s)$ are **latent** variables (object positions, lighting,...),
- $\boldsymbol{x} = [x_1, x_2, ..., x_m]$ are **observed** features (pixels).
- $ullet f: \mathbb{R}^d o \mathbb{R}^m$ is nonlinear mixing function.

Goal: Recovering of s and f (up to acceptable ambiguities)

Learn an encoder $\boldsymbol{g}_{\phi}(\boldsymbol{x}) = \hat{\boldsymbol{s}}$ such that $\hat{s}_i = \rho_i(s_{\boldsymbol{\pi}(i)}), \forall i \in \{1,...,d\}$, for a permutation $oldsymbol{\pi}(\cdot)$ & an element-wise invertible $ho_i(\cdot)$.

Applications: disentanglement, causal representation learning, self-supervised learning, etc.

Challenge: Non-identifiability

Related Works

Identifiability challenge is notorious in nonlinear ICA (nICA): even with statistically independent $s_1,...,s_d$, the model $m{x}=m{f}(m{s})$ is non-identifiable [1].

nICA with Auxiliary Variables u. Side information (time frame labels, observation group indices, view indices, etc.) can help underpin identifiability of NMMI via [2]

$$p(\boldsymbol{s}|\boldsymbol{u}) = \prod_{i=1}^{d} p(s_i|\boldsymbol{u}). \tag{2}$$

 \red{S} Diverse auxiliary $oldsymbol{u}$ not always available

nICA with Structured f. Conformal/local isometry/post-nonlinear/piecewise-affine f. \bigcirc Structured f holds in limited applications

Structured Jacobian. $[\mathbf{J}_{\mathbf{f}}(\mathbf{s})]_{i,j} = \partial x_i/\partial s_j$ describes how x_i is influenced by s_j .

- 1. Independent Mechanism Analysis: orthogonal columns of $oldsymbol{J_f(s)}$ [3].
- Lacking global identifiability
- 2. Structural Sparsity: a sparsity pattern on $m{J_f}(m{s})$, proposes to minimize $||m{J_f}(m{s})||_1$ [4].
- 3. Object-centric Learning: a compositional f a sparsely structured $J_f(s)$ where non-zero blocks corresponds to an object in image [5].
- $\boldsymbol{J_f}(\boldsymbol{s})$ is non-sparse in many settings

Sufficiently Diverse Influence (SDI) Condition

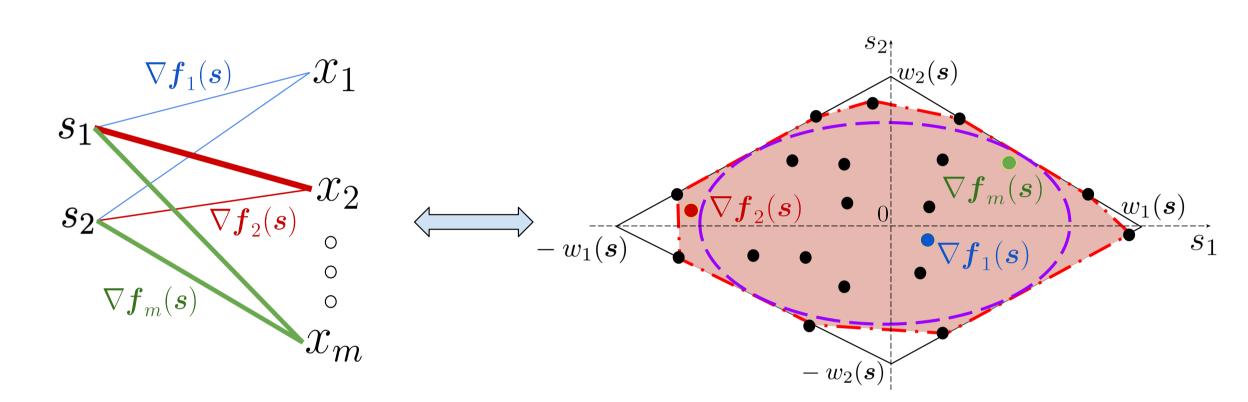
Assumption: Sufficiently Diverse Influence

At $m{s} \in \mathcal{S}$, there exists an $m{s}$ -dependent weighted L_1 -norm ball $\mathcal{B}_1^{m{w}(m{s})}$ such that $abla f_1(m{s}),...,
abla f_m(m{s}) \in \mathcal{B}_1^{m{w}(m{s})}$. In addition:

- 1. $\mathcal{E}(\mathcal{B}_1^{\boldsymbol{w}(\boldsymbol{s})}) \subseteq \text{conv}\{\nabla f_1(\boldsymbol{s}),...,\nabla f_m(\boldsymbol{s})\} \subseteq \mathcal{B}_1^{\boldsymbol{w}(\boldsymbol{s})},$
- 2. conv $\{\nabla f_1(\boldsymbol{s}),...,\nabla f_m(\boldsymbol{s})\}^* \cap \mathrm{bd}(\mathcal{E}(\mathcal{B}_1^{\boldsymbol{w}(\boldsymbol{s})})^*) = \mathrm{extr}(\mathcal{B}_{\infty}^{\boldsymbol{w}(\boldsymbol{s})}).$

 $\mathcal{S} \subset \mathbb{R}^d$: set of latent variables; $\mathcal{X} \subset \mathbb{R}^m$: set of observations; $\operatorname{conv}\{\cdot\}$: the convex hull of a set of vectors; $\mathcal{E}(\mathcal{P})$ is its MVIE of polytope \mathcal{P} ; \mathcal{P}^* : polar set of \mathcal{P} ; $\text{extr}(\mathcal{P})$ extreme points of \mathcal{P} ; $\text{bd}(\mathcal{P})$: boundary of \mathcal{P} .

Illustration of Sufficiently Diverse Influence (SDI) Condition



Visualizing Sufficiently Diverse Influence: Row vectors $\nabla f_1(\mathbf{s}),...,\nabla f_m(\mathbf{s})$ of $\mathbf{J_f}(\mathbf{s})$ are sufficiently distinct — their convex hull contains MVIE of an L_1 -norm ball $\mathcal{B}_1^{\boldsymbol{w}(\boldsymbol{s})}$.

Origin. SDI geometry originates from sufficiently-scattered condition (SSC) in NMF and PMF [6]; however, SSC characterizes the latent factors of a data matrix (e.g., W, H in $oldsymbol{X} = oldsymbol{W}oldsymbol{H}$), do not involve nonlinear functions or derivatives as in SDI.

Interpretation. SDI reflects how s diversely affects $x_1, ..., x_m$: some features are positively influenced by s_j ($\partial x_i/\partial s_j > 0$), others are negatively influenced ($\partial x_{i'}/\partial s_j < 0$). ullet Statistically dependent $oldsymbol{s}$ and dense $oldsymbol{J_f(s)}$ can satisfy SDI.

- SDI favors $m \gg d$ case (i.e., high-dim data with low-dim factors, say $m \gg d$
- ullet SDI-satisfying geometric pattern of $\nabla f_1(m{s}),...,\nabla f_m(m{s})$ can vary with $m{s}$.

Learning Criterion: Jacobian Volume Maximization

Using $m{f_{ heta}}, m{g_{\phi}}$ as two neural networks for autoencoder architecture $m{x} = m{f_{ heta}}(m{g_{\phi}}(m{x}))$.

$$\max_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathbb{E}[\log \det(\boldsymbol{J}_{\boldsymbol{f}_{\boldsymbol{\theta}}}(\boldsymbol{g}_{\boldsymbol{\phi}}(\boldsymbol{x}))^{\top} \boldsymbol{J}_{\boldsymbol{f}_{\boldsymbol{\theta}}}(\boldsymbol{g}_{\boldsymbol{\phi}}(\boldsymbol{x})))] \tag{3}$$

s.t.
$$||\boldsymbol{J}_{f_{\boldsymbol{\theta}}}(\boldsymbol{g}_{\boldsymbol{\phi}}(\boldsymbol{x}))_{i,:}||_{1} \leq C, \quad \forall i = 1, ..., m,$$
 (4)

$$\mathbf{x} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{g}_{\boldsymbol{\phi}}(\mathbf{x})), \quad \forall \mathbf{x} \in \mathcal{X}$$
 (5)

- ullet Objective (3) maximizes volume of convex hull of $m{J}_{f_{m{ heta}}}(\hat{m{s}})$ spanned by its columns.
- Constraint (4) keeps the rows of $J_{f_{\theta}}(\hat{s})$ inside some L_1 -norm ball, to comply with SDI.
- Constraint (5) keeps f_{θ}, g_{ϕ} invertible over d-dim manifold.
- $\Rightarrow \partial x/\partial s_1,...,\partial x/\partial s_d$ are encouraged to scatter in space (inside a certain L_1 -norm ball).

Identifiability Results ©

Identifiability of DICA

Let an optimal solution be $(\widehat{m{ heta}},\widehat{m{\phi}})$. Assume $\widehat{m{f}}=m{f}_{\widehat{m{ heta}}}$ and $\widehat{m{g}}=m{g}_{\widehat{m{\phi}}}$ are universal function representers. Suppose the SDI condition holds for the NMMI model, for every $s \in \mathcal{S}$. Then, $\widehat{m{s}}=\widehat{m{g}}(m{x})=\widehat{m{g}}\circ m{f}(m{s})$ where

$$[\widehat{\boldsymbol{s}}]_i = [\widehat{\boldsymbol{g}}(\boldsymbol{x})]_i = \rho_i(s_{\boldsymbol{\pi}(i)}), \ \forall i \in [d],$$
 (6)

in which π is a permutation of $\{1,\ldots,d\}$ and $\rho_i(\cdot):\mathbb{R}\to\mathbb{R}$ is an invertible function.

(Informal) Identifiability w/ Finite Number of SDI-Satisfying Points

Suppose each point in the finite set $\mathcal{S}_N:=\{m{s}^{(1)},...,m{s}^{(N)}\}$ with $\mathcal{X}_N:=\{m{x}\in\mathcal{X}:$ $\{m{x}=m{f}(m{s}), orall m{s}\in \mathcal{S}_N\}$ is SDI-satisfying. Under several regularity conditions, $m{\widehat{g}}(m{x}^{(n)})=0$ $\widehat{\mathbf{\Pi}}\widehat{\boldsymbol{\rho}}(\boldsymbol{s}^{(n)}), \forall n \in [N]$ for a constant permutation $\widehat{\mathbf{\Pi}}$. With probability at least $1-\delta$,

$$\mathbb{E}_{\boldsymbol{s} \sim p(\boldsymbol{s})}[||\widehat{\boldsymbol{g}}(\boldsymbol{x}) - \widehat{\boldsymbol{\Pi}}\widehat{\boldsymbol{\rho}}(\boldsymbol{s})||_2] = \mathcal{O}\left((L_{\boldsymbol{f}}L_{\widehat{\boldsymbol{g}}} + L_{\widehat{\boldsymbol{\rho}}})\mathcal{R}_N(\mathcal{G}) + \sqrt{\ln(1/\delta)/N}\right),\tag{7}$$

where $\mathcal{R}_N(\mathcal{G})$ is the empirical Rademacher complexity of the encoder class.

Implementation (%)

Given L realizations of $m{x}$, $\{m{x}^{(1)},...,m{x}^{(L)}\}$, use MLPs for $m{f_{ heta}},m{g_{\phi}}$. At t-th epoch, optimize

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathcal{L}_t := (1/L) \sum_{n=1}^{L} \left(||\boldsymbol{x}^{(n)} - \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{g}_{\boldsymbol{\phi}}(\boldsymbol{x}^{(n)}))||_2^2 - \lambda_{\text{vol}}(t) \times c_{\text{vol}} + \lambda_{\text{norm}} \times c_{\text{norm}}(t) \right)$$
(8)

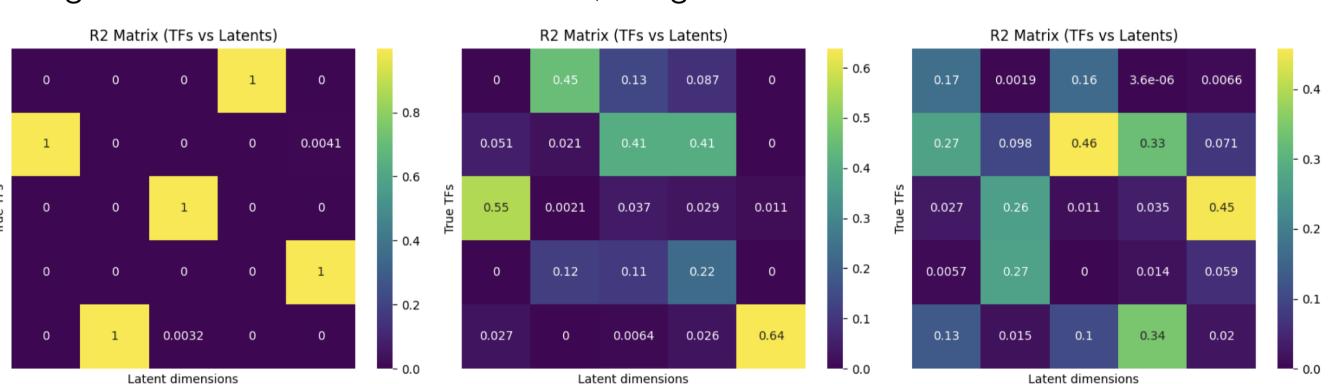
using a warm-up heuristic with T_w warm-up epochs:

 $ullet c_{ ext{vol}} := \log \det(oldsymbol{J_{f_{oldsymbol{ heta}}}}(oldsymbol{g_{oldsymbol{\phi}}}(oldsymbol{x}^{(n)}))^ op oldsymbol{J_{f_{oldsymbol{ heta}}}}(oldsymbol{g_{oldsymbol{\phi}}}(oldsymbol{x}^{(n)}))) ext{ with } \lambda_{ ext{vol}} := rac{\lambda_{ ext{vol}}}{T_{ ext{w}}} \min\{t, T_{ ext{w}}\}$ (a more computationally friendly trace-based surrogate of $c_{
m vol}$ is available)

 $||oldsymbol{J_{f_{oldsymbol{ heta}}}}(oldsymbol{g_{oldsymbol{\phi}}}(oldsymbol{x}^{(n)}))||_{1}|$ $|\mathsf{Softplus}\{||oldsymbol{J_{f_{ heta}}}(oldsymbol{g_{\phi}}(oldsymbol{x}^{(n)}))||_1 - C\} \quad \mathsf{if} \ t > T_{\mathrm{w}}$ where C is average of last 10 epochs during warm-up.

Experiments (more in our paper)

Single-cell Genomics . Inferring transcription factors' activities from gene expressions. Data generation follows SERGIO simulator, using TRRUST dataset + cross-talk noises.



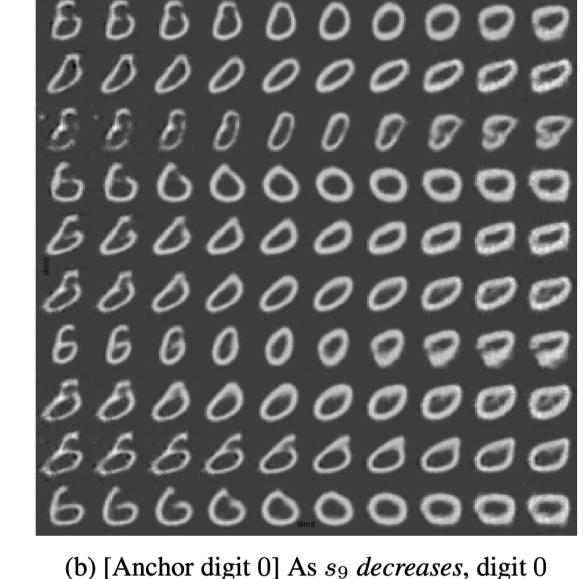
(a) DICA (mean $R^2 \approx 1$)

(b) Sparse (mean $R^2 \approx 0.4544$) (c) Base (mean $R^2 \approx 0.3381$)

Heatmap of \mathbb{R}^2 scores between estimated components and ground-truth mRNA concentrations of TFs.

Image Disentanglement 📸. Applying autoencoder with DICA loss on MNIST dataset.

(a) [Anchor digit 3] As s₈ increases, digit 3 increasingly looks like digit 9.



increasingly looks like digit 6.

References:

- [1] Hyvärinen & Pajunen, "Nonlinear independent component analysis: Existence and uniqueness results", Neural Networks, 1999.
- [2] Hyvärinen et al., "Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning", AISTATS, 2019.
- [3] Gresele et al., "Independent mechanism analysis, a new concept?", NeurIPS, 2021.
- [4] Zheng & Zhang, "Generalizing Nonlinear ICA Beyond Structural Sparsity", NeurIPS, 2023.
- [5] Brady et al., "Provably Learning Object-Centric Representations", ICML, 2023.
- [6] Tatli & Erdogan, "Polytopic Matrix Factorization: Determinant Maximization Based Criterion and Identifiability", IEEE TSP, 2021.

Acknowledgements: This work is supported in part by the NSF CAREER Award ECCS-2144889.