On the Stability of Low Pass Graph Filter with A Large Number of Edge Rewires

HS. Nguyen¹, Y. He², HT. Wai²

¹Department of Computer Science & Engineering, CUHK ²Department of Systems Engineering $\&$ Engineering Management, CUHK

May. 2022

Figure: Examples of network data

- Complex data can be represented as graphs of relationship between entities, e.g., epidemics, social networks, power networks,...
- **Graph Signal Processing develops rigorous tools for processing data** on graphs, e.g. graph filters. Ω

HS. Nguyen, Y. He, HT. Wai (CUHK) [Graph Filter Stability](#page-0-0) May. 2022 2/22

- Recently, graph neural networks (GNNs) have shown great empirical performance in network inference on various benchmark dataset
- Graph filters are used as building blocks for many GNNs; see [Defferard et al., 2016], [Kipf et al., 2017], [Gama et al., 2020]
- Specifically, GNN is a cascade of *layers*; each *layer* applies a bank of graph filters, followed by a pointwise nonlinearity

- Since retraining a GNN is expensive, it is desirable to utilize the pre-trained model.
- This motivates the stability analysis of GNNs subject to perturbations of graph edges, graph nodes, graph signals,...
	- How much the output would change?
	- What kinds of perturbations greatly affect the output?
	- etc.
- As stability of graph filters characterizes stability of GNNs, our goal is to investigate the former.

Scope: We focus on stability analysis of graph filters subjecting to perturbations in graph topology.

- Consider undirected and connected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $|\mathcal{V}| = n$ with adjacency matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and degree matix $\boldsymbol{D} = Di$ ag $(\boldsymbol{A1}).$
- A graph shift operator (GSO) is a symmetric matrix $\boldsymbol{S} \in \mathbb{R}^{n \times n}$ such that $[\mathbf{S}]_{ii} \neq 0$ iff $i = j$ or $(i, j) \in \mathcal{E}$
	- Admit an eigendecomposition $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$.
	- Denote Λ_k and V_k as the matrices of smallest-k eigenvalues and eigenvectors of S.
- In this work, we consider two common GSOs:
	- Unnormalized Laplacian $L_U := D A$.
	- Normalized Laplacian ${\bm L}_{\text{norm}} := {\bm D}^{-1/2} {\bm L}_{U} {\bm D}^{-1/2}.$

つへへ

Graph Signal and Filter

- A graph signal on G is a scalar function $x: \mathcal{V} \to \mathbb{R}$, often represented by a vector $\mathbf{x} \in \mathbb{R}^n$.
- A graph filter $\mathcal{H}(\bm{S})\in\mathbb{R}^{n\times n}$ maps the input signal $\bm{x}\in\mathbb{R}^{n\times n}$ to the output signal $y = H(S)x$.
- Consider linear graph filter:

$$
\mathcal{H}(\mathbf{S}) = \sum_{t=0}^{T-1} h_t \mathbf{S}^t.
$$

By setting $h(\lambda) = \sum_{t=0}^{T-1} h_t \lambda^t$, we can rewrite the filter as:

$$
\mathcal{H}(\mathbf{S}) = \boldsymbol{V} h(\boldsymbol{\Lambda}) \boldsymbol{V}^{\mathsf{T}}
$$

where $h(\Lambda) = Diag(h(\lambda_1), ..., h(\lambda_n)).$

Low pass Graph Filter

- Consider low pass graph filter, which retains low frequency components of input while suppressing high frequency components.
- The graph filter $\mathcal{H}(\cdot)$ is $(\underline{\lambda}, \overline{\lambda})$ -low pass if

$$
\eta = \frac{\max\limits_{\lambda \in [\overline{\lambda}, \infty)} |h(\lambda)|}{\min\limits_{\lambda \in [0,\underline{\lambda}]} |h(\lambda)|} < 1.
$$

Figure: Visualization of low pass graph filter ([link to source](https://ieeexplore.ieee.org/document/9099515))

 \leftarrow \Box

つひひ

We adopt the following measure of stability used by previous works such as [Gama et al., 2020] and [Kenlay et al., 2021]:

Graph filter distance

Consider a graph topology perturbation, e.g., via edge rewiring, of G (with GSO **S**) into \hat{G} (with new GSO \hat{S}). The graph filter distance between two filters $H(S)$ and $H(\hat{S})$ is

$$
\mathbb{D}_{\mathcal{H}}(\boldsymbol{\mathcal{S}},\hat{\boldsymbol{\mathcal{S}}}) := ||\mathcal{H}(\boldsymbol{\mathcal{S}}) - \mathcal{H}(\hat{\boldsymbol{\mathcal{S}}})||_2.
$$

- We ignore node permutations for sake of simplicity.
- Our goal is to upperbound the graph filter distance by quantities that are related to macroscopic structure (e.g., community) of the graph.

- Existing works focus on the case of relatively small and arbitrary perturbations:
	- Given that $||S \hat{S}||_2 \leq \varepsilon$, most previous works showed that graph filters are linearly stable, i.e. $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}}) = \mathcal{O}(\varepsilon)$.
	- Notably, [Kenlay et al., 2021] gave a linear stability bound when the graph topology is subjected to a type of structural perturbation (double-edge rewires).
- On the other hand, [Keriven et al., 2020] gave a stability bound for very large graphs where ε can be arbitrarily large, but only for normalized Lapacian matrix.

つへへ

- We give a stability bound on graph filter distance which depends on community structure and low pass filtering capability:
	- independent of the size of perturbations.
	- works for both unnormalized and normalized Laplacian matrix.
- We show that when graph filter is sufficiently low pass,

$$
\mathbb{D}_{\mathcal{H}}(\bm{S}, \hat{\bm{S}}) = O(\eta) + o(1)
$$

where η is a constant depending on choice of filter.

• Numerical experiments support our findings.

There are several approaches to analyze graph filter distance $\mathbb{D}_{\mathcal{H}}(S, \hat{S})$:

- Algebraic: $||\mathcal{H}(\bm{S}) \mathcal{H}(\hat{\bm{S}})||_2 = ||\sum_{t=0}^{T-1} h_t(\bm{S}^t \hat{\bm{S}}^t)||_2.$
	- Used by [Levie et al., 2019], [Gama et al., 2020], [Kenlay et al., 2021].
	- The bound would depend on the size of perturbations, i.e. $||S \hat{S}||_2$.
- Spectral: $||\mathcal{H}(S) \mathcal{H}(\hat{S})||_2 = ||V h(\Lambda) V^{\top} \hat{V} h(\hat{\Lambda}) \hat{V}^{\top}||_2$.
	- Enable us to break free from dependence on $||S \hat{S}||_2$.
	- Principal eigenvalues/eigenvectors of S and \hat{S} contain information on community structures.

つへへ

Bounding graph filter distance

Assumptions

(H1) There exists a constant \mathbb{H}_{max} such that $\sup_{\lambda\in[0,\bar{\lambda}]}|h(\lambda)|\leq\mathbb{H}_{max}.$

• (H2) There exists a constant
$$
L_{\mathbb{H}}
$$
 such that $|h(\lambda) - h(\lambda')| \le L_{\mathbb{H}} |\lambda - \lambda'|, \forall \lambda, \lambda' \in [0, \bar{\lambda}].$

Theorem 1

Let $\mathcal{H}(\cdot)$ be a $(\underline{\lambda}, \overline{\lambda})$ -low pass filter with ratio η and the GSOs S , \hat{S} satisfy $\lambda_k, \hat{\lambda}_k \leq \underline{\lambda} < \overline{\lambda} \leq \lambda_{k+1}, \hat{\lambda}_{k+1}$. Then,

$$
\mathcal{D}_{\mathbb{H}}(\boldsymbol{S},\hat{\boldsymbol{S}})\leq 2\mathbb{H}_{\textit{max}}\eta+L_{\mathbb{H}}||\boldsymbol{\Lambda}_{k}-\hat{\boldsymbol{\Lambda}}_{k}||_{2}+2\mathbb{H}_{\textit{max}}||\boldsymbol{V}_{k}-\hat{\boldsymbol{V}}_{k}||_{2}
$$

Interpretation: The bound on $\mathcal{D}_{\mathbb{H}}(S, \hat{S})$ depends on

- \bullet η , which is dependent on frequency response
- $||\mathbf{\Lambda}_k \hat{\mathbf{\Lambda}}_k||_2$ and $||\mathbf{V}_k \hat{\mathbf{V}}_k||_2$, capturing similarity in community structure

 Ω

K ロ ト K 何 ト K ヨ ト K

- For simplicity, consider a planted partition model $PPM(n, k, a_n, b_n)$ where *n* nodes are equally divided into k clusters:
	- **•** probability of edge between nodes from same cluster is $a_n + b_n$
	- **•** probability of edge between nodes from different clusters is b_n
- Recall from Theorem 1 that the graph filter distance is bounded by $||\textbf{\textit{V}}_k-\hat{\textbf{\textit{V}}}_k||_2$ and $||\bm{\Lambda}_k-\hat{\bm{\Lambda}}_k||_2$, which are known to contain information about community structure
- Intuition: if original G and perturbed \hat{G} have the same community structure (e.g. having the same PPM), then $\mathbb{D}_{\mathcal{H}}(S, \hat{S})$ is small

For example of a perturbation scheme that does not alter the generating PPM of the original graph, consider the following:

Edge rewiring scheme: $G \rightarrow \hat{G}$

- **■** It is given that $G \sim PPM(n, k, a_n, b_n)$.
- **2** For each inter/intra-cluster block (i, j) :
	- Delete a portion of $p_{re} \in [0,1]$ edges uniformly.
	- Then add edges to the node pairs without edges with probability $[b^{-1}_{ij}-(1-p_{\sf re})]^{-1}$ $p_{\sf re}$ independently.

The resultant \hat{G} is considered to have the same underlying PPM as \mathcal{G} .

 200

Stability with Unnormalized Laplacian as GSO

Corollary 1 (adapted from [Deng et al., 2021])

Let $\alpha,\beta\in\mathbb{R}^+$, consider $\mathcal{G},\hat{\mathcal{G}}\sim PPM(n,2,\alpha\log n/n,\beta\log n/n).$ Suppose that Let $\alpha, \beta \in \mathbb{R}$, consider $g, g \sim r \cdot m(n, 2, \alpha \log n/n, \beta \log n)$
 $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, then with probability at least $1 - o(1)$,

$$
||\textbf{V}_2-\hat{\textbf{V}}_2||_2=o(1); \ ||\boldsymbol{\Lambda}_2-\hat{\boldsymbol{\Lambda}}_2||_2=\mathcal{O}\left(\frac{\log n}{n}\right)
$$

Stability bound with Unnormalized Laplacian as GSO

Under the conditions of Theorem 1 and Corollary 1, with number of blocks $k = 2$

$$
\mathbb{D}_{\mathcal{H}}(\mathbf{L}_U, \hat{\mathbf{L}}_U) \leq 2\eta \mathbb{H}_{\text{max}} + \mathbb{H}_{\text{max}}o(1) + L_{\mathbb{H}}\mathcal{O}\left(\frac{\log n}{n}\right)
$$

with high probability. $\mathbb{D}_{\mathcal{H}}(\bm{L}_U, \hat{\bm{L}}_U)$ is small when $\eta \ll 1$ and $n \to \infty.$

• The case of $k > 2$ is left for future works.

 QQQ

Kロト K個 K

Stability with Normalized Laplacian as GSO

Corollary 2 (adapted from [Deng et al., 2021])

Let $\alpha,\beta\in\mathbb{R}^+$, consider $\mathcal{G},\hat{\mathcal{G}}\sim PPM(n,k,\alpha\log n/n,\beta\log n/n).$ Suppose that Let $\alpha, \beta \in \mathbb{R}$, consider $g, g \sim r r m(n, \kappa, \alpha \log n/n, \beta \log n)$

$$
||\boldsymbol{L}_{norm} - \boldsymbol{\hat{L}}_{norm}||_2 = \mathcal{O}\left(\frac{1}{\sqrt{\log n}}\right)
$$

Stability bound with Normalized Laplacian as GSO

Under the conditions of Theorem 1 and Corollary 2,

$$
\mathbb{D}_\mathcal{H}(\mathcal{L}_{norm}, \hat{\mathcal{L}}_{norm}) \leq 2\eta \mathbb{H}_{max} + (\mathbb{H}_{max} + L_{\mathbb{H}}) \mathcal{O}\left(\frac{1}{\sqrt{\log n}}\right)
$$

with high probability. $\mathbb{D}_{\mathcal{H}}(\mathcal{L}_{norm}, \hat{\mathcal{L}}_{norm})$ is small when $\eta \ll 1$ and $n \rightarrow \infty.$

∢ □ ▶ к 何 ▶ к ∃ ▶ .

 200

• Compare $\mathbb{D}_{\mathcal{H}}(S,\hat{S})$ against number of nodes *n* under the following configurations of graph filters

- We compare high-pass filters \mathcal{H}_{HP} with low-pass filters \mathcal{H}_{LP} to demonstrate the need of low-pass property for graph filter stability
- Generate original graph G from a pre-defined PPM, and generated perturbed graph \hat{G} using defined edge rewiring scheme
- For every n, perform Monte-Carlo simulations with 100 trials to estimate $\mathbb{E}[\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})]$ for each of the graph filter configurations

<su[p](#page-17-0)>1</sup>For L_{U} , \pm (1/log n) ensures low-pass property is inse[nsi](#page-15-0)ti[ve](#page-17-0) [t](#page-15-0)[o s](#page-16-0)p[ec](#page-0-0)[tru](#page-21-0)[m](#page-0-0) [gro](#page-21-0)[wt](#page-0-0)[h](#page-21-0) QQQ HS. Nguyen, Y. He, HT. Wai (CUHK) [Graph Filter Stability](#page-0-0) May. 2022 17/22

Synthetic experiment: Result

(a) Unnormalized Laplacian L_{II} as GSO.

Figure: Comparing high pass (left) vs. low pass (right) filter for L_U

4 **D F**

 QQ

Real data experiment

- Original graph G is [email-Eu-core](https://snap.stanford.edu/data/email-Eu-core.html) network with 1005 nodes, 25571 edges and 42 communities.
- \bullet We perform a simplified edge rewiring process on G to obtain the perturbed graph \tilde{G} .
- We compare $\mathbb{D}_{\mathcal{H}}(S,\hat{S})$ between high pass filter and low pass filter against rewiring ratios $p_{r e}$.

Figure: Comparing high pass filter (green) vs. low pass filter (red) for L_U

- We study stability of low pass graph filters subjecting to a large number of edge rewires
- We propose a stability bound w.r.t. frequency response, instead of the size of perturbations
- Our bound shows that if the underlying community structure is unchanged, the low pass graph filters are stable
- Numerical experiments support our hypotheses

 200

- T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.
- M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," Advances in neural information processing systems, vol. 29, pp. 3844–3852, 2016.
- F. Gama, J. Bruna, and A. Ribeiro, "Stability properties of graph neural networks," IEEE Transactions on Signal Processing, vol. 68, pp. 5680–5695, 2020.
- H. Kenlay, D. Thanou, and X. Dong, "On the stability of polynomial spectral graph filters," in ICASSP, 2020.
- H. Kenlay, D. Thanou, and X. Dong, "Interpretable stability bounds for spectral graph filters," in ICML, 2021.

 QQ

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

References (cont.)

- R. Levie, E. Isufi, and G. Kutyniok, "On the transferability of spectral graph filters," in 2019 13th International conference on Sampling Theory and Applications (SampTA). IEEE, 2019, pp. 1–5.
- N. Keriven, A. Bietti, and S. Vaiter, "Convergence and stability of graph convolutional networks on large random graphs," in Neural Information Processing Systems, 2020.
- K. Rohe, S. Chatterjee, and B. Yu, "Spectral clustering and the high-dimensional stochastic blockmodel," The Annals of Statistics, vol. 39, no. 4, 8 2011.
- J. Lei and A. Rinaldo, "Consistency of spectral clustering in stochastic block models," The Annals of Statistics, vol. 43, no. 1, 2 2015.
- S. Deng, S. Ling, and T. Strohmer, "Strong consistency, graph laplacians, and the stochastic block model," Journal of Machine Learning Research, vol. 22, no. 117, pp. 1–44, 2021.

 QQ