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Graph data

(a) COVID-19 cases
(link to source)

(b) User communities on Twitter
(link to source)

Figure: Examples of network data

Complex data can be represented as graphs of relationship between
entities, e.g., epidemics, social networks, power networks,...
Graph Signal Processing develops rigorous tools for processing data
on graphs, e.g. graph filters.
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Motivation

Recently, graph neural networks (GNNs) have shown great empirical
performance in network inference on various benchmark dataset

Graph filters are used as building blocks for many GNNs; see
[Defferard et al., 2016], [Kipf et al., 2017], [Gama et al., 2020]

Specifically, GNN is a cascade of layers; each layer applies a bank of
graph filters, followed by a pointwise nonlinearity
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Motivation

Since retraining a GNN is expensive, it is desirable to utilize the
pre-trained model.

This motivates the stability analysis of GNNs subject to perturbations
of graph edges, graph nodes, graph signals,...

How much the output would change?
What kinds of perturbations greatly affect the output?
etc.

As stability of graph filters characterizes stability of GNNs, our goal is
to investigate the former.

Scope: We focus on stability analysis of graph filters subjecting to
perturbations in graph topology.
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Graph

Consider undirected and connected graph G = (V, E), |V| = n with
adjacency matrix A ∈ Rn×n and degree matix D = Diag(A1).

A graph shift operator (GSO) is a symmetric matrix S ∈ Rn×n such
that [S]ij 6= 0 iff i = j or (i , j) ∈ E

Admit an eigendecomposition S = VΛV T .
Denote Λk and Vk as the matrices of smallest-k eigenvalues and
eigenvectors of S .

In this work, we consider two common GSOs:

Unnormalized Laplacian LU := D − A.
Normalized Laplacian Lnorm := D−1/2LUD−1/2.
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Graph Signal and Filter

A graph signal on G is a scalar function x : V → R, often represented
by a vector x ∈ Rn.

A graph filter H(S) ∈ Rn×n maps the input signal x ∈ Rn×n to the
output signal y = H(S)x .

Consider linear graph filter:

H(S) =
T−1∑
t=0

htS t .

By setting h(λ) =
∑T−1

t=0 htλ
t , we can rewrite the filter as:

H(S) = V h(Λ)V T

where h(Λ) = Diag(h(λ1), ..., h(λn)).

HS. Nguyen, Y. He, HT. Wai (CUHK) Graph Filter Stability May. 2022 6 / 22



Low pass Graph Filter

Consider low pass graph filter, which retains low frequency
components of input while suppressing high frequency components.

The graph filter H(·) is (λ, λ)-low pass if

η =

max
λ∈[λ,∞)

|h(λ)|

min
λ∈[0,λ]

|h(λ)|
< 1.

Figure: Visualization of low pass graph filter (link to source)
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Measure of stability

We adopt the following measure of stability used by previous works such as
[Gama et al., 2020] and [Kenlay et al., 2021]:

Graph filter distance

Consider a graph topology perturbation, e.g., via edge rewiring, of G (with
GSO S) into Ĝ (with new GSO Ŝ). The graph filter distance between two
filters H(S) and H(Ŝ) is

DH(S , Ŝ) := ||H(S)−H(Ŝ)||2.

We ignore node permutations for sake of simplicity.

Our goal is to upperbound the graph filter distance by quantities that
are related to macroscopic structure (e.g., community) of the graph.

HS. Nguyen, Y. He, HT. Wai (CUHK) Graph Filter Stability May. 2022 8 / 22



Prior works

Existing works focus on the case of relatively small and arbitrary
perturbations:

Given that ||S − Ŝ ||2 ≤ ε, most previous works showed that graph
filters are linearly stable, i.e. DH(S , Ŝ) = O(ε).
Notably, [Kenlay et al., 2021] gave a linear stability bound when the
graph topology is subjected to a type of structural perturbation
(double-edge rewires).

On the other hand, [Keriven et al., 2020] gave a stability bound for
very large graphs where ε can be arbitrarily large, but only for
normalized Lapacian matrix.
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Our contribution

We give a stability bound on graph filter distance which depends on
community structure and low pass filtering capability:

independent of the size of perturbations.
works for both unnormalized and normalized Laplacian matrix.

We show that when graph filter is sufficiently low pass,

DH(S , Ŝ) = O(η) + o(1)

where η is a constant depending on choice of filter.

Numerical experiments support our findings.
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Some possible approaches

There are several approaches to analyze graph filter distance DH(S , Ŝ):

Algebraic: ||H(S)−H(Ŝ)||2 = ||
∑T−1

t=0 ht(S t − Ŝ t)||2.

Used by [Levie et al., 2019], [Gama et al., 2020], [Kenlay et al., 2021].
The bound would depend on the size of perturbations, i.e. ||S − Ŝ ||2.

Spectral: ||H(S)−H(Ŝ)||2 = ||V h(Λ)V T − V̂ h(Λ̂)V̂ T ||2.

Enable us to break free from dependence on ||S − Ŝ ||2.
Principal eigenvalues/eigenvectors of S and Ŝ contain information on
community structures.
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Bounding graph filter distance

Assumptions

(H1) There exists a constant Hmax such that supλ∈[0,λ̄] |h(λ)| ≤ Hmax .

(H2) There exists a constant LH such that

|h(λ)− h(λ′)| ≤ LH|λ− λ′| ,∀λ, λ′ ∈ [0, λ̄].

Theorem 1

Let H(·) be a (λ, λ)-low pass filter with ratio η and the GSOs S , Ŝ satisfy

λk , λ̂k ≤ λ < λ ≤ λk+1, λ̂k+1. Then,

DH(S , Ŝ) ≤ 2Hmaxη + LH||Λk − Λ̂k ||2 + 2Hmax ||Vk − V̂k ||2

Interpretation: The bound on DH(S , Ŝ) depends on

η, which is dependent on frequency response

||Λk − Λ̂k ||2 and ||Vk − V̂k ||2, capturing similarity in community structure
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Application to PPM

For simplicity, consider a planted partition model PPM(n, k , an, bn)
where n nodes are equally divided into k clusters:

probability of edge between nodes from same cluster is an + bn
probability of edge between nodes from different clusters is bn

Recall from Theorem 1 that the graph filter distance is bounded by
||Vk − V̂k ||2 and ||Λk − Λ̂k ||2, which are known to contain
information about community structure

Intuition: if original G and perturbed Ĝ have the same community
structure (e.g. having the same PPM), then DH(S , Ŝ) is small
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Perturbation scheme

For example of a perturbation scheme that does not alter the generating
PPM of the original graph, consider the following:

Edge rewiring scheme: G → Ĝ
1 It is given that G ∼ PPM(n, k, an, bn).
2 For each inter/intra-cluster block (i , j):

Delete a portion of pre ∈ [0, 1] edges uniformly.
Then add edges to the node pairs without edges with probability
[b−1

ij − (1− pre)]−1pre independently.

The resultant Ĝ is considered to have the same underlying PPM as G.
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Stability with Unnormalized Laplacian as GSO

Corollary 1 (adapted from [Deng et al., 2021])

Let α, β ∈ R+, consider G, Ĝ ∼ PPM(n, 2, α log n/n, β log n/n). Suppose that√
α−
√
β >
√

2, then with probability at least 1− o(1),

||V2 − V̂2||2 = o(1); ||Λ2 − Λ̂2||2 = O
(

log n

n

)

Stability bound with Unnormalized Laplacian as GSO

Under the conditions of Theorem 1 and Corollary 1, with number of blocks k = 2

DH(LU , L̂U) ≤ 2ηHmax + Hmaxo(1) + LHO
(

log n

n

)
with high probability. DH(LU , L̂U) is small when η � 1 and n→∞.

The case of k > 2 is left for future works.
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Stability with Normalized Laplacian as GSO

Corollary 2 (adapted from [Deng et al., 2021])

Let α, β ∈ R+, consider G, Ĝ ∼ PPM(n, k , α log n/n, β log n/n). Suppose that√
α−
√
β >
√

2, then with probability at least 1− o(1),

||Lnorm − L̂norm||2 = O
(

1√
log n

)

Stability bound with Normalized Laplacian as GSO

Under the conditions of Theorem 1 and Corollary 2,

DH(Lnorm, L̂norm) ≤ 2ηHmax + (Hmax + LH)O
(

1√
log n

)
with high probability. DH(Lnorm, L̂norm) is small when η � 1 and n→∞.
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Synthetic experiment: Objective & Setup

Compare DH(S , Ŝ) against number of nodes n under the following
configurations of graph filters

Unnormalized Laplacian1 Normalized Laplacian

HLP(·) exp(−(1/ log n)LU) exp(−Lnorm)

HHP(·) exp((1/ log n)LU) exp(Lnorm)

We compare high-pass filters HHP with low-pass filters HLP to
demonstrate the need of low-pass property for graph filter stability

Generate original graph G from a pre-defined PPM, and generated
perturbed graph Ĝ using defined edge rewiring scheme

For every n, perform Monte-Carlo simulations with 100 trials to
estimate E[DH(S , Ŝ)] for each of the graph filter configurations

1For LU , ±(1/ log n) ensures low-pass property is insensitive to spectrum growth
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Synthetic experiment: Result

Figure: Comparing high pass (left) vs. low pass (right) filter for LU
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Real data experiment

Original graph G is email-Eu-core network with 1005 nodes, 25571
edges and 42 communities.

We perform a simplified edge rewiring process on G to obtain the
perturbed graph Ĝ.

We compare DH(S , Ŝ) between high pass filter and low pass filter
against rewiring ratios pre.

Figure: Comparing high pass filter (green) vs. low pass filter (red) for LU
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Conclusion

We study stability of low pass graph filters subjecting to a large
number of edge rewires

We propose a stability bound w.r.t. frequency response, instead of
the size of perturbations

Our bound shows that if the underlying community structure is
unchanged, the low pass graph filters are stable

Numerical experiments support our hypotheses
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