On the Stability of Low Pass Graph Filter with a Large Number of Edge Rewires

Motivation

Graph convolutional neural networks (GCNs) performs very well empirically. Graph filters can be viewed as a building block of GCNs, hence stability properties of graph filters can characterize stability of GCNs. However, theoretical stability of graph filter/GCNs is not fully understood. Existing works mostly focus on sta*bility w.r.t. perturbation size*, i.e. small perturbation regime.

Objective

We investigate the conditions for stability graph filter when the graph is **subject to a large number of perturbations** (in this work, edge rewiring). Specifically, we connect the stability bound to community structure, allowing number of perturbations to be arbitrarily large.

Preliminaries

Undirected, connected graph. $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ has n nodes, with adjacency \mathbf{A} and degree \mathbf{D} Two GSOs. $S = V \Lambda V^T$

• Unnormalized Laplacian $\mathbf{L}_U = \mathbf{D} - \mathbf{A}$

• Normalized Laplacian $\mathbf{L}_{norm} = \mathbf{D}^{-1/2} \mathbf{L}_U \mathbf{D}^{-1/2}$

Eigenvalues of **S**: $0 = \lambda_1 \leq \ldots \leq \lambda_n$ **Perturbation.** Consider a perturbation of \mathcal{G} (with GSO **S**) into $\hat{\mathcal{G}}$ (with GSO $\hat{\mathbf{S}}$) Graph Filter.

$$\mathcal{H}(\mathbf{S}) = \sum_{t=0}^{T-1} h_t \mathbf{S}^t = \mathbf{V} h(\mathbf{\Lambda}) \mathbf{V}^T$$

Def. 1. Low pass graph filter

$$\mathcal{H})(\cdot) \text{ is } (\underline{\lambda}, \overline{\lambda}) \text{-low pass if} \\ \eta = \left(\min_{\lambda \in [0, \underline{\lambda}]} |h(\lambda)|\right)^{-1} \max_{\lambda \in [\overline{\lambda}, \infty)} |h(\lambda)| < 1$$

where $\underline{\lambda} \leq \lambda$; η is called low pass ratio. Cutoff frequency $\underline{\lambda}$ may depend on graph size n.

Hoang-Son Nguyen¹, Yiran He², Hoi-To Wai²

The Chinese University of Hong Kong

Measure of stability $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$

The graph filter distance between $\mathcal{H}(\mathbf{S})$ and $\mathcal{H}(\hat{\mathbf{S}})$ is defined similar to [1] and [2]:

 $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}}) = \sup_{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\left\| \mathcal{H}(\mathbf{S})\mathbf{x} - \mathcal{H}(\hat{\mathbf{S}})\mathbf{x} \right\|_{2}}{||\mathbf{x}||_{2}}$ $= \|\mathcal{H}(\mathbf{S}) - \mathcal{H}(\hat{\mathbf{S}})\|_2$

We ignore node permutation for simplicity.

Bounding $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$

Assumptions.

 $1 \sup_{\lambda \in [0,\lambda]} |h(\lambda)| \le \mathbb{H}_{\max}$

 $|h(\lambda) - h(\lambda')| \le L_{\mathbb{H}} |\lambda - \lambda'|, \ \forall \ \lambda, \lambda' \in [0, \underline{\lambda}]$

Notations. Λ_k and \mathbf{V}_k (resp. $\hat{\Lambda}_k$ and $\hat{\mathbf{V}}_k$) as matrices of smallest-k eigenvalues and eigenvectors of **S** (resp. $\hat{\mathbf{S}}$) **Spectral gap requirement.** Graph frequencies of $\mathbf{S}, \hat{\mathbf{S}}$ satisfy $\lambda_k \leq \underline{\lambda} < \lambda \leq \lambda_{k+1}$ and $\hat{\lambda}_k \leq \underline{\lambda} < \lambda \leq \lambda_{k+1}$ $\hat{\lambda}_{k+1}$ for some $1 \leq k \leq n-1$. The common transition region $(\lambda, \underline{\lambda})$ separates low and high frequencies of the two graphs.

Thm. 1. Upperbound of $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$

If $\mathcal{H}(\cdot)$ be $(\overline{\lambda}, \underline{\lambda})$ low pass filter with ratio η , then $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}}) \le 2\mathbb{H}_{\max}\eta$ $+ L_{\mathbb{H}} || \mathbf{\Lambda}_k - \mathbf{\hat{\Lambda}}_k ||_2 + 2 \mathbb{H}_{\max} || \mathbf{V}_k - \mathbf{\hat{V}}_k ||_2$

Interpreting Thm. 1. The bound of $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$ consists of three terms

- First term depends on frequency response
- Last two terms capture similarity in community structure (like spectral clustering)

Thm. 1 implies that low pass graph filters $\mathcal{H}(\mathbf{S}), \mathcal{H}(\hat{\mathbf{S}})$ (with $\eta \ll 1$) has $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$ dependent on dissimilarity between their community structure, hence insensitive to number of edge rewires.

Stability with Edge Rewiring

We apply the result to *planted partition model (PPM)* with structural invariant edge rewiring.

Consequently, with high probability,

Prior works: Using Proposition 1 from [2], we can derive a stability bound for \mathbf{L}_{norm}

 $\mathsf{PPM}(n, k, a_n, b_n)$ has n nodes partitioned into k equal blocks; the matrix of connection probability of two nodes from two blocks is $\mathbf{B} = [b_{ij}]_{1 \le i,j \le k} = a_n \mathbf{I} + b_n \mathbf{1} \mathbf{1}^T$. Edge rewiring scheme.

1 Generate original $\mathcal{G} \sim \mathsf{PPM}(n, k, a_n, b_n)$ 2 For each block (i, j), randomly (i) delete a portion of $p_{re} \in [0, 1]$ edges, and (ii) add edges to unconnected node pairs with probability $[b_{ij}^{-1} - (1 - p_{re})]^{-1} p_{re}$ independently; we obtain perturbed graph $\hat{\mathcal{G}} \sim \mathsf{PPM}(n, k, a_n, b_n)$

Stability with L_U

Let $\mathcal{G}, \hat{\mathcal{G}} \sim \mathsf{PPM}(n, 2, \alpha \log n/n, \beta \log n/n)$ with \mathbf{L}_U , $\hat{\mathbf{L}}_U$. Suppose that $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, then with high probability,

 $\|\mathbf{V}_2 - \hat{\mathbf{V}}_2\|_2 = o(1), \|\mathbf{\Lambda}_2 - \hat{\mathbf{\Lambda}}_2\|_2 = \mathcal{O}(\log n/n).$

 $\mathbb{D}_{\mathcal{H}}(\mathbf{L}_U, \hat{\mathbf{L}}_U) \leq 2\eta \mathbb{H}_{\max} + \mathbb{H}_{\max} o(1)$ $+ L_{\mathbb{H}} \mathcal{O}(\log n/n).$

Stability with L_{norm}

Let $\mathcal{G}, \hat{\mathcal{G}} \sim \mathsf{PPM}(n, k, \alpha \log n/n, \beta \log n/n)$ with $\mathbf{L}_{norm}, \hat{\mathbf{L}}_{norm}$. Then, with high probability,

 $\|\mathbf{L}_{\mathsf{norm}} - \hat{\mathbf{L}}_{\mathsf{norm}}\|_2 = \mathcal{O}\left(1/\sqrt{\log n}\right)$

Consider k = 2 with $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$ and (for simplicity) $\beta \leq 1$. If $\mathcal{H}(\cdot)$ is $(\underline{\lambda}, \overline{\lambda})$ -low pass with $\underline{\lambda} \approx 1/2, \, \overline{\lambda} \approx 1, \, \text{then with high probability,}$

> $\mathbb{D}_{\mathcal{H}}(\mathbf{L}_{\mathsf{norm}}, \hat{\mathbf{L}}_{\mathsf{norm}}) \leq 2\eta \,\mathbb{H}_{\max}$ $+ \left(\mathbb{H}_{\max} + L_{\mathbb{H}}\right) \mathcal{O}\left(1/\sqrt{\log n}\right)$

 $\mathbb{D}_{\mathcal{H}}(\mathbf{L}_{\mathsf{norm}}, \hat{\mathbf{L}}_{\mathsf{norm}}) \leq \sum_{t=0}^{T-1} t \, 2^{t-1} |h_t| \, \|\mathbf{L}_{\mathsf{norm}} - \hat{\mathbf{L}}_{\mathsf{norm}}\|_2$

We compare $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$ against no. of nodes under different filters. We implement the defined edge rewiring scheme. The figures compare average $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \mathbf{S})$ of (Left) High pass filter $\mathcal{H}_{HP}(\cdot)$ (Right) Low pass filter $\mathcal{H}_{LP}(\cdot)$:

$$\mathbb{D}_{\mathcal{H}}(\mathbf{L}_U, \hat{\mathbf{L}}_U)$$

Real Data Experiment. We perform edge rewiring on email-Eu-core network. The figures compare $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$ against rewiring ratios with (Red) Low pass filter (Green) High pass filter:

Numerical Experiments

(b) Normalized Laplacian \mathbf{L}_{norm} as GSO.

References

[1] Gama et al., "Stability Properties of Graph Neural Networks", IEEE TSP, 2020

[2] Kenlay et al., "Interpretable Stability Bounds for Spectral Graph Filters", ICML, 2021