On the Stability of Low Pass Graph Filter with a Large Number of Edge Rewires

The Chinese University of Hong Kong

$\bf Measure\ of\ stability\ \mathbb{D}_{\mathcal{H}}(\mathbf{S},\hat{\mathbf{S}})$

The graph filter distance between $\mathcal{H}(\mathbf{S})$ and $\mathcal{H}(\hat{\mathbf{S}})$) is defined similar to [1] and [2]:

> $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$ $) = \sup$ **x∈**^{Rn},**x≠0** $\frac{\left\Vert \mathcal{H}(\mathbf{S})\mathbf{x}-\mathcal{H}(\hat{\mathbf{S}})\mathbf{x}\right\Vert }{}%$ ||**x**||² $= \|\mathcal{H}(\mathbf{S}) - \mathcal{H}(\hat{\mathbf{S}})\|_2$

Motivation

Graph convolutional neural networks (GCNs) performs very well empirically. Graph filters can be viewed as a building block of GCNs, hence stability properties of graph filters can characterize stability of GCNs. However, theoretical stability of graph filter/GCNs is not fully understood. Existing works *mostly focus on stability w.r.t. perturbation size*, i.e. small perturbation regime.

Objective

Eigenvalues of **S**: $0 = \lambda_1 \leq ... \leq \lambda_n$ **Perturbation.** Consider a perturbation of \mathcal{G} (with GSO **S**) into $\tilde{\mathcal{G}}$ $\boldsymbol{\hat{j}}$ (with GSO **S** ˆ) **Graph Filter.**

We investigate the conditions for stability graph filter when the graph is **subject to a large number of perturbations** (in this work, edge rewiring). Specifically, we **connect the stability bound to community structure**, allowing number of perturbations to be arbitrarily large.

where $\lambda \leq \lambda$; η is called low pass ratio. Cutoff frequency *λ* may depend on graph size *n*.

Hoang-Son Nguyen¹, Yiran He², Hoi-To Wai²

$\mathbf{Bounding} \ \mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$)

Preliminaries

Undirected, connected graph. $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ has *n* nodes, with adjacency **A** and degree **D** Tw ^{*a*} **GSOs.** $S = VAV^T$

• Unnormalized Laplacian $\mathbf{L}_U = \mathbf{D} - \mathbf{A}$

• Normalized Laplacian $\mathbf{L}_{norm} = \mathbf{D}^{-1/2} \mathbf{L}_{U} \mathbf{D}^{-1/2}$

 $\mathbf{Notations.}$ $\mathbf{\Lambda}_k$ and \mathbf{V}_k (resp. $\mathbf{\Lambda}$ $\boldsymbol{\hat{\lambda}}$ $_k$ and $\dot{\mathbf{V}}$ ˆ *^k*) as matrices of smallest-*k* eigenvalues and eigenvectors of **S** (resp. **S** ˆ) **Spectral gap requirement.** Graph frequencies of **S***,* **S** $\hat{\mathbf{S}}$ satisfy $\lambda_k \leq \underline{\lambda} < \overline{\lambda} \leq \lambda_{k+1}$ and $\hat{\lambda}_k \leq \underline{\lambda} < \overline{\lambda} \leq$ *λ* $\hat{\lambda}$ $k+1$ for some $1 \leq k \leq n-1$. The common transition region (λ, λ) separates low and high frequencies of the two graphs.

Thm. 1. Upperbound of $\mathbb{D}_{\mathcal{H}}(S, \hat{S})$)

If $\mathcal{H}(\cdot)$ be $(\overline{\lambda}, \underline{\lambda})$ low pass filter with ratio η , then $\mathbb{D}_{\mathcal{H}}(\mathbf{S},\hat{\mathbf{S}})\leq 2\mathbb{H}_{\max}\eta$ $+$ $L_{\mathbb{H}}||\mathbf{\Lambda}_{k} - \tilde{\mathbf{\Lambda}}$ $\mathbf{\hat{\Lambda}}_k||_2 + 2\mathbb{H}_{\max}||\mathbf{V}_k - \mathbf{\hat{V}}_k||_2$

 $\textbf{Interpreting Thm. 1. The bound of } \mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$) consists of three terms

$$
\mathcal{H}(\mathbf{S}) = \sum_{t=0}^{T-1} h_t \mathbf{S}^t = \mathbf{V} h(\mathbf{\Lambda}) \mathbf{V}^T
$$

Def. 1. Low pass graph filter

$$
\mathcal{H})(\cdot) \text{ is } (\underline{\lambda}, \overline{\lambda})\text{-low pass if}
$$
\n
$$
\eta = \left(\min_{\lambda \in [0,\underline{\lambda}]} |h(\lambda)|\right)^{-1} \max_{\lambda \in [\overline{\lambda}, \infty)} |h(\lambda)| < 1
$$

Thm. 1 implies that low pass graph filters $\mathcal{H}(\mathbf{S})$, $\mathcal{H}(\hat{\mathbf{S}})$) $(with \eta \ll 1)$ has $\mathbb{D}_{\mathcal{H}}(S, \hat{S})$) *dependent on dissimilarity between their community structure*, hence insensitive to number of edge rewires.

)

 $\frac{\sqrt{2}}{2}$

PPM (n, k, a_n, b_n) has *n* nodes partitioned into *k* equal blocks; the matrix of connection probability of two nodes from two blocks is $\mathbf{B} = [b_{ij}]_{1 \le i,j \le k} = a_n \mathbf{I} + b_n \mathbf{1} \mathbf{1}^T$. **Edge rewiring scheme.**

¹ Generate original G ∼ PPM(*n, k, an, bn*) **2** For each block (i, j) , randomly (i) delete a portion of $p_{\text{re}} \in [0, 1]$ edges, and (ii) add edges to unconnected node pairs with probability $[b_{ij}^{-1} - (1 - p_{\text{re}})]^{-1}p_{\text{re}}$ independently; we obtain perturbed graph $\tilde{\mathcal{G}} \sim$ $\boldsymbol{\hat{j}}$ $PPM(n, k, a_n, b_n)$

Stability with L_U

We ignore node permutation for simplicity.

Assumptions.

 $\log \sup_{\lambda \in [0,\lambda]} |h(\lambda)| \leq \mathbb{H}_{\max}$

 $\mathbf{2} |h(\lambda) - h(\lambda')| \leq L_{\mathbb{H}} |\lambda - \lambda'|, \forall \lambda, \lambda' \in [0, \lambda]$

Let $\mathcal{G}, \tilde{\mathcal{G}} \sim$ $\boldsymbol{\hat{j}}$ $\text{PPM}(n, 2, \alpha \log n/n, \beta \log n/n)$ with \mathbf{L}_U , **L** ˆ *u*. Suppose that $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, then with high $\left\langle \frac{Z}{Q}, \frac{\alpha \log n}{Q}, \frac{\beta}{Q} \right\rangle$ probability,

 $\|\mathbf{V}_2 - \hat{\mathbf{V}}_2\|_2 = o(1), \|\mathbf{\Lambda}_2 - \hat{\mathbf{\Lambda}}\|_2$ $\boldsymbol{\hat{\lambda}}$ $2||2 = \mathcal{O}(\log n/n).$

Let $\mathcal{G}, \hat{\mathcal{G}} \sim$ $\boldsymbol{\hat{j}}$ $PPM(n, k, \alpha \log n/n, \beta \log n/n)$ with $\mathbf{L}_{\mathsf{norm}},\ \dot{\mathbf{L}}$ ˆ norm. Then, with high probability,

 $||\mathbf{L}_{\text{norm}} - \hat{\mathbf{L}}_{\text{norm}}||_2 = \mathcal{O}$ $\sqrt{ }$ $1/\sqrt{\log n}$ \setminus

Consider $k = 2$ with √ *α* − √ *β >* √ 2 and (for simplicity) $\beta \leq 1$. If $\mathcal{H}(\cdot)$ is $(\lambda, \overline{\lambda})$ -low pass with $\lambda \approx 1/2$, $\overline{\lambda} \approx 1$, then with high probability,

> $\mathbb{D}_{\mathcal{H}}(\mathbf{L}_{\mathsf{norm}}, \hat{\mathbf{L}}_{\mathsf{norm}}) \leq 2\eta \, \mathbb{H}_{\max}$ $+ \left(\mathbb{H}_{\max} + L_{\mathbb{H}} \right) \mathcal{O} \left(1 \right)$ $1/\sqrt{\log n}$ \setminus

Prior works: Using Proposition 1 from [2], we can derive a stability bound for L_{norm}

 $\mathbb{D}_{\mathcal{H}}(\mathbf{L}_{\mathsf{norm}}, \hat{\mathbf{L}}_{\mathsf{norm}}) \leq \sum_{\mathcal{L}}$ *T*−1 *t*=0 $t \, 2^{t-1} \, |h_t| \, \| {\bf L}_{\mathsf{norm}} - \hat{\bf L}_{\mathsf{norm}} \|_2$

We compare $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$) against no. of nodes under different filters. We implement the defined edge rewiring scheme. The figures compare average $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$) of (Left) High pass filter $\mathcal{H}_{HP}(\cdot)$ (Right) Low pass filter $\mathcal{H}_{LP}(\cdot)$:

$$
\mathbb{D}_{\mathcal{H}}(\mathbf{L}_U, \tilde{\mathbf{L}}_U)
$$

- First term depends on frequency response
- Last two terms capture similarity in community structure (like spectral clustering)

Stability with Edge Rewiring

We apply the result to *planted partition model (PPM) with structural invariant edge rewiring*.

Consequently, with high probability,

 $\mathbb{D}_{\mathcal{H}}(\mathbf{L}_U, \hat{\mathbf{L}}_U) \leq 2\eta \mathbb{H}_{\text{max}} + \mathbb{H}_{\text{max}} o(1)$ $+ L_{\mathbb{H}} \mathcal{O}(\log n/n)$.

Stability with Lnorm

Numerical Experiments

(b) Normalized Laplacian L_{norm} as GSO.

Real Data Experiment. We perform edge rewiring on [email-Eu-core](https://snap.stanford.edu/data/email-Eu-core.html) network. The figures compare $\mathbb{D}_{\mathcal{H}}(\mathbf{S}, \hat{\mathbf{S}})$) against rewiring ratios with (Red) Low pass filter (Green) High pass filter:

References

[1] Gama et al., "Stability Properties of Graph Neural Networks", IEEE TSP, 2020

[2] Kenlay et al., "Interpretable Stability Bounds for Spectral Graph Filters", ICML, 2021