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Our Group at CUHK

▶ We’re from Department of Systems Engineering and Engineering

Management at The Chinese University of Hong Kong.

▶ Our department focuses on financial engineering, information systems,

logistics and supply chain management, and operations research.

▶ Beautiful campus by the sea, surrounded by lots of greens and hiking trails.
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Our Group at CUHK

▶ Hong Kong is a vibrant global financial hub: a mix of Western and Chinese

culture, country parks and skyscrapers; just under 2hr of flight from Hanoi.

▶ Lots of opportunities for funded postgraduate studies for non-local students.

▶ Come visit us sometime!
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Our Group at CUHK

▶ Our team is advised by Prof. Hoi-To Wai, working in:

▶ graph signal processing and graph learning for network science, and
▶ stochastic and distributed algorithms for machine learning, signal

processing, and control.

▶ Today I’ll talk about our recent works on graph signal processing.
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Motivation: Network (Graph) Data

▶ Graph signal processing (GSP): tool to

analyze network data (graph signals).

▶ Data-generating processes affected by

network structure: social, economic,

biological, energy, transportation, etc.
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Dealing with Network Data

▶ Statistics: Gaussian Markov random fields,

graphical models

graph – statistical association of data

▶ Machine learning: dimensionality reduction

graph – representation of data

▶ SP: Graph Signal Processing

graph – input/output association of data

=⇒ generative, interpretable model
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Low Pass GSP
▶ SP cares about the frequency content in a (time domain) signal —

low frequency vs high frequency:

▶ Similar notion carries over to graph signal processing (GSP) —

low pass graph signals vs non low pass graph signals:
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Takehome: Low pass graph signals are prevalent + entail structure that

enables (blind) graph topology learning.
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Graph Data (output) = Filter (system) + Excitation (input)

▶ Consider a undirected graph G = (V ,E ,A) with N nodes

Excitation

Network Identification: Background

! Goal: we identify latent network structure from network data.

Identifying latent network structures Motivation & Background 8 / 28

obs. on nodes

▶ Graph signals = vectors defined on V , i.e., x ∈ RN .

excitation
‘filter’−−−−→ signal

†as in signal processing, filter encodes the responses of a system to excitation.

▶ We model the network dynamics generating the graph data by:

linear time invariant (LTI) filter = ‘shift-invariant’ + ‘linear combination’.
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Graph Filters

▶ Network structure G is encoded in a matrix called graph shift operator
▶ Common choice is Laplacian matrix L = Diag(A1)− A
▶ The EVD of L is L = UΛU⊤ with 0 = λ1 < · · · < λN .

▶ Consider the graph filter as a matrix polynomial of L:

H(L) :=
+∞∑
ℓ=0

hℓLℓ.

Shift-invariant prop: y = H(L)x → Ly = LH(L)x ≡ H(L)Lx

▶ GSP Perspective: network data are filtered graph signals,

y︸︷︷︸
output

= H(L)︸ ︷︷ ︸
system

x︸︷︷︸
input

=
+∞∑
ℓ=0

hℓ Lℓx .

▶ The signal/observation is y while x is viewed as the excitation.
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What are low and high frequencies basis on graph?

▶ High frequency graph signal → large variation in adjacent entries:

S(x) :=
∑

i,jAij(xi − xj)
2 = x⊤Lx .

▶ Intuition: if S(x) is small, the graph signal x is smooth. It holds

S(ui ) = u⊤
i Lui = λi , as seen:

1
 = 0

2
 = 0.4706

10
 = 5.2813

15
 = 8.0818
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u1︸︷︷︸
lowest frequency

· · · −→ · · · uN︸︷︷︸
highest frequency

=⇒ U = (u1 u2 · · · uN) form the right basis for graph signals on G .
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Frequency Analysis via Graph Fourier Transform

▶ Graph Fourier Transform gives the frequency components of a signal:

ỹ = U⊤y ←− ỹi = ⟨ui , y⟩.

▶ The transfer/frequency response function of the graph filter is:

h̃ = h(λ) where h̃i = h(λi ) :=
∑

ℓhℓλ
ℓ
i .

Thus: H(L) = Uh(Λ)U⊤, h(Λ) = Diag(h(λ1), ..., h(λn)).

▶ We have the convolution theorem:

y = H(L)x ⇐⇒ ỹ = h̃ ⊙ x̃ ← ⊙ is element-wise product.

▶ Graph filter can be classified as either low-pass1, band-pass, or

high-pass, depending on its graph frequency response2.

1E.g., an ideal low-pass h̃1, ..., h̃K = 1, h̃K+1, ..., h̃N = 0.
2[Isufi et al., 2024] E. Isufi, F. Gama, D. I Shuman, S. Segarra. Graph Filters for

Signal Processing and Machine Learning on Graphs. TSP, 2022.
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Low Pass Graph Filter (LPGF)

Def. For 1 ≤ K ≤ N − 1, define

ηK :=
max{|h(λK+1)|, . . . , |h(λN)|}
min{|h(λ1)|, . . . , |h(λK )|}

.

If the low-pass ratio satisfies ηK < 1,

then H(L) is K -low-pass.

λ1
. . .

λK λK+1
· · · · · · λn
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▶ Integer K characterizes the bandwidth, or the cut-off frequency.

▶ We say that y is K low pass signal provided that

y = H(L)x , where H(L) is K -low pass & x satisfies some mild cond..

▶ Graph frequencies are non-uniformly distributed: λK ≪ λK+1 tends

to induce K -low-pass filters, e.g., stochastic block model (SBM).
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Physical Models lead to Low Pass Signals

Social Network Opinions3

▶ V = individuals, E = friends.

▶ DeGroot model for opinions:

yt+1 = (1−β)
(
I−αL

)
yt+βxt .

▶ Observed steady state:

y∞ = (I + α̃L)−1 x = H(L)x ,

where α̃ = β(1− α)/α > 0.

Prices in Stock Market4

▶ V = financial inst., E = ties.

▶ Business performances evolve as:

yt+1 = (1− β)H(L)yt + βBx ,

e.g., stock return.

▶ Observed steady state:

y∞ =
(
1
β I − β

βH(L)
)−1Bx

= H̃(L)Bx .

Fact5: Both H(L), H̃(L) are low pass graph filters.

3[DeGroot, 1974] M. H. DeGroot, Reaching a consensus. JASA, 1974.
4[Billio et al., 2012] M. Billio et al., Econometric measures of connectedness and

systemic risk in the finance and insurance sectors, Journal of Economics Finance, 2012.
5[Ramakrishna et al., 2020] R. Ramakrishna, H.-T., A. Scalgione. A user guide to

low-pass graph signal processing and its applications. SPM, 2020.
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Graph Learning from Network Data

▶ Goal: estimate L or some information about it.

▶ Working hypothesis: a number of graph signals y (t) are available as
Network Identification: Background

! Goal: we identify latent network structure from network data.

Identifying latent network structures Motivation & Background 8 / 28

GSP model

Unknown Graph Observed Low Pass Graph Signals

Observed graph signals: y (t) ≈ H(L)x (t) = H(L)Bz (t), t = 0, ...,T − 1

– H(L) is low pass, z (t) is 0-mean, B is pattern of excitation

▶ Graph learning relies on two properties of low pass signals:
▶ Smoothness → graph topology learning.
▶ Low-rankness → graph feature learning (e.g., community, centrality)
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Smoothness and Graph Learning

▶ Insight: For K -low-pass graph signals (ηK ≪ 1) with full-rank

excitation satisfying B = I , we observe that

E
[
y⊤
ℓ Lyℓ

]
≈

K∑
i=1

λi |h(λi )|2 + σ2Tr(L)
low pass filter≈ 0,

i.e., the low pass filtered graph signals are smooth w.r.t. L.
▶ Idea: Fit a graph optimizing for smoothness (GL-SigRep)6:

min
zℓ,ℓ=1,...,m,L̂

1
m

∑m
ℓ=1

{
1
σ2 ∥zℓ − yℓ∥22 + z⊤

ℓ L̂zℓ
}
← note z ≈ y

s.t. Tr(L̂) = N, L̂ji = L̂ij ≤ 0, ∀ i ̸= j , L̂1 = 0,

6[Dong et al., 2016] X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, “Learning

Laplacian matrix in smooth graph signal representations.” TSP, 2016.
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Numerical Experiment: GL-SigRep

▶ Topology learnt7 using GL-SigRep from the synthetic data generated

through a low pass graph filter:

yℓ =
√

L
−1

xℓ, xℓ ∼ N (0, I ),

7Image credits: [Dong et al., 2016].
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Low-rank-ness and Graph Feature Learning

Issue: with low-rank excitation (B ∈ RN×R with R < N) −→ graph

learning = difficult ∵ data is nearly rank deficient...

▶ Insight: Suppose H(L) is (η,K ) low pass, then

Cy = E[yy⊤]= H(L)UCxU⊤H(L)⊤ ≈ UKCx̃U⊤
K ,

where Cx = BB⊤, UK = (u1, ...,uK ) ∈ RN×K .

⇒ Thus Cy is also low rank!

▶ Approximation holds if η ≪ 1 ⇒ low rank H(·),
rank(H(L)) ≈ K ≪ N and range space ≈ UK .

▶ Idea: spectral method to extract principal

components in UK from Cy .

All nodes are 
excited!

Only a few nodes 
can be excited!

=⇒ Can (still) learn communities and centrality of the graph.
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Blind community detection (Blind CD)

Idea: spectral clustering applied on empirical covariance Ĉy ≈ Cy :

(i) find the top-k ÛK ∈ RN×K of Ĉy = 1
m

∑m
ℓ=1 yℓy⊤

ℓ ;

(ii) apply k-means on the rows of ÛK .

▶ Theorem: Denote the detected clusters as N̂1, . . . , N̂K , then
8

K(N̂1, . . . , N̂k ;UK )︸ ︷︷ ︸
K -means obj. based on UK

− K⋆︸︷︷︸
Optimal K -means obj.

= O(ηk +m−1/2).

† → performance of spectral clustering (with known topology) if ηk → 0.

▶ Learning of high-level structure is robust to low-rank excitation.

8[Wai et al., 2019] H.-T., S. Segarra, A. Ozdaglar, A. Scaglione, A. Jadbabaie,

“Blind community detection from low-rank excitations of a graph filter,” TSP, 2019.
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Numerical Experiment: Blind CD (+Boosting)
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(a) As R = rank(Cx) increases, Blind CD approaches the performance

of spectral clustering on the true GSO.
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Blind Centrality Learning

▶ Eigen-centrality = TopEV(A) is revealed by TopEV(Cy ) for 1-low

pass signals =⇒ a simple PCA procedure suffices:

Y = [ y1 … 𝑦𝑚]
Observation

𝐶𝑦 =
1

𝑚


𝑡=1

𝑚

𝑦𝑡(𝑦𝑡)𝑇

Sample Covariance

PCA

ො𝑣1 ≔ TopEV(𝐶𝑦)

Centrality Estimation
Detected K possible
central nodes

▶ Theorem9: let v1 be the true eig. centrality,

∥v̂1 − u1∥2 = O(η1 +m−1/2).

9[He and Wai, 2022] Y. He, H.-T., “Detecting central nodes from low-rank excited

graph signals via structured factor analysis,” TSP, 2022 ← note GSO = A in this case.
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Numerical Experiment: Blind Centrality LearningNumerical Results

I For each model: (L) Hweak and (R) Hstrong.
I The error rate for most methods decreases with k .
I RPCA and proposed algorithm outperform other algorithms.

25 / 34

▶ Graph filter H(·) is (left) ‘weak’ low pass, i.e., η ≈ 1; (right) ‘strong’

low pass, i.e., η ≪ 1.

▶ Proposed Algorithm 1 with NMF outperforms SOTA in the considered

setting for ‘weak’ low pass; and similarly as PCA for ‘strong’ low pass.
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Numerical Experiment: Blind Centrality LearningNumerical Results

I (L) Hstrong and (R) Hweak .

26 / 34

(left) ‘Strong’ low pass, (right) ‘Weak’ low pass
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Numerical Experiment: Blind Centrality Learning

(a) Detected central nodes with performance measured on correlation

of nodes with (left) S&P500 index, (right) voting outcomes.
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Leveraging Low-passness with Partial Observation

▶ In many settings, we do not observe complete graph signals on every

nodes, e.g., large social network, power network, etc.

▶ Hidden nodes remain influential and affect the observations:

y = H(L)x with y =

[
yobs
yhid

]
, L =

[
Lo,o Lo,h

Lh,o Lh,h

]
Observed Vobs & sub-graph Lo,oSub-graph Lh,o

Hidden Vhid & sub-graph Lh,h
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Learning with Partial Observation

▶ Goal: infer about the subgraph of observable nodes, Lo,o:

y = H(L)x =

[
yobs
yhid

]
, Cy =

[
C o

y C o,h
y

C h,o
y C h

y

]
, L =

[
Lo,o Lo,h

Lh,o Lh,h

]
Leveraging Lowrank-ness: provided H(L) is (η,K ) low pass,

C o
y = EoCyE⊤

o ≈ (EoUK )Cx̃(EoUK )
⊤

where Eo is row-selection matrix for Vobs. ↑ can estimate EoUK ≈ UK ,o

▶ Key observation: low-rankness of H(L) supersedes partial obs.

▶ Straightforward extension for graph feature learning: partial

community detection10, partial centrality inference11

10[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, ”Community Inference

From Partially Observed Graph Signals: Algorithms and Analysis”, TSP, 2022.
11[He and Wai, 2023] Y. He, H.-T., Central nodes detection from partially observed

graph signals, in ICASSP 2023.
26 / 36



Agenda

Background

Basics of GSP Models

A Quick Introduction

Low Pass Graph Signals

Graph Learning from Network Data

Smoothness and Graph Learning

Low-rank Model and Graph Feature Learning

Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

27 / 36



Detecting Low-pass Signals

Question: How do we know if a set of graph signals are low pass?

▶ Topology inferred from non low pass signals can be deceptive.

(a) Ground truth. (b) Topology learnt by GL-SigRep on non-low-pass signals.

▶ Challenges: graph topology A and filter H(A) are unknown.

▶ Warning: an ill posed problem – graph signals is smooth on one

graph, but non-smooth on another.
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Detecting Low-pass Signals

▶ Assume: no. of dense clusters, K , in the graph is known a-priori.

=⇒ λ1, . . . , λK ≈ 0 =⇒ if the filter is low pass, it will be K low pass.

▶ Observation: graph signals from K low pass filter exhibit particular

spectral signature. E.g., SBM graph with K = 3 clusters,
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Idea: Measure clusterability of principal eigenvectors.
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Application: Robustifying Graph Learning

What if graph signals are corrupted with non-low-pass observations? =⇒
screen them out by a blind detector and apply [Dong et al., 2016].

(a) Ground truth graph learnt from clean data.

(b) Graph learnt from corrupted data (mixed w/ high-pass signals).

(c) Graph learnt after the pre-screening procedure.

▶ Other applications: blind detection of network dynamics, blind

anomaly detection, etc.12

12[Zhang et al., 2024] C. Zhang, Y. He, H.-T.. Detecting Low Pass Graph Signals via

Spectral Pattern: Sampling Complexity and Applications. TSP, 2024.
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Detecting Low-pass Signals w/ Partial Observations

y = H(L)x =

[
yobs
yhid

]
, Cy =

[
C o

y C o,h
y

C h,o
y C h

y

]
, L =

[
Lo,o Lo,h

Lh,o Lh,h

]

▶ Observation: the spectral signature is preserved even in partially

observed low-pass graph signals, E.g., SBM graph with K = 3 clusters,

Measuring clusterability of principal eigenvectors still works.
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Application: Robustifying Partial Blind CD

What if partial graph signals are corrupted with non-low-pass observations?

=⇒ screen them out by a blind detector and apply [Wai et al., 2022].

▶ Other applications: blind detection of network dynamics, blind

anomaly detection, etc. with only partial observations13

13[Nguyen and Wai, 2024] H.-S., H.-T., “On Detecting Low-pass Graph Signals under

Partial Observations”, in SAM, 2024.
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Stability of Graph Filter with Edge Rewiring

▶ Graph filter is an important building block of Graph Convolutional

Neural Network (GCN) → trained on H(L), but applied on H(L̂).
▶ Stability14 is related to transferability of GCNs. Existing results

require small no. of edge rewires.

Frequency-domain bound: If H(L) is low pass, then

∥H(L)−H(L̂)∥ = O(η + ∥Uk − Ûk∥+ ∥Λk − Λ̂k∥),

where Uk − Ûk , Λk − Λ̂k are perturbations of top eigenvectors/values.

▶ Residuals → 0 for edge rewiring on SBMs perturbations15.

14[Gama et al., 2020] F. Gama, J. Bruna, A. Ribeiro. Stability properties of graph

neural networks. TSP, 2020.
15[Nguyen et al., 2022] H.-S., Y. He, H.-T., “On the stability of low pass graph filter

with a large number of edge rewires,” in ICASSP, 2022.
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Stability of Graph Filter with Edge Rewiring

Frequency-domain bound: If H(L) is low pass, then

∥H(L)−H(L̂)∥ = O(η + ∥Uk − Ûk∥+ ∥Λk − Λ̂k∥),

where Uk − Ûk , Λk − Λ̂k are perturbations of top eigenvectors/values.

▶ Low pass filters are insensitive to no. of rewiring vs. high pass filters.
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Wrapping Up

Excitation

Network Identification: Background

! Goal: we identify latent network structure from network data.

Identifying latent network structures Motivation & Background 8 / 28

obs. on nodes

▶ Takehome Point: Low pass graph signals are prevalent + entail
structure that enables (blind) graph topology learning.

▶ Smoothness → graph topology learning.

▶ Low-rankness → topology feature learning (centrality, community).

▶ also for learning from partial observation, ...

▶ Related problems: how to detect low pass signals, application to

machine learning on graph, ...
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Thank you!

Questions & comments are welcomed.
An (old) tutorial can be found here: arxiv.org/abs/2008.01305
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