Graph Learning with Low-pass Graph Signal Processing

Hoang-Son Nguyen

Department of SEEM, The Chinese University of Hong Kong Thanks: Prof. Hoi-To Wai for the slide materials

13 September 2024, Talk at ORLab-SLSCM Center

Our Group at CUHK

- ▶ We're from Department of Systems Engineering and Engineering Management at The Chinese University of Hong Kong.
- ▶ Our department focuses on financial engineering, information systems, logistics and supply chain management, and operations research.
- ▶ Beautiful campus by the sea, surrounded by lots of greens and hiking trails.

Our Group at CUHK

- ▶ Hong Kong is a vibrant global financial hub: a mix of Western and Chinese culture, country parks and skyscrapers; just under 2hr of flight from Hanoi.
- ▶ Lots of opportunities for funded postgraduate studies for non-local students.
- Come visit us sometime!

Our Group at CUHK

▶ Our team is advised by Prof. Hoi-To Wai, working in:

- ▶ graph signal processing and graph learning for network science, and
- \triangleright stochastic and distributed algorithms for machine learning, signal processing, and control.
- \triangleright Today I'll talk about our recent works on graph signal processing.

Motivation: Network (Graph) Data

- \triangleright Graph signal processing (GSP): tool to analyze network data (graph signals).
- ▶ Data-generating processes affected by network structure: social, economic, biological, energy, transportation, etc.

Dealing with Network Data

▶ Statistics: Gaussian Markov random fields, graphical models graph – statistical association of data

 \blacktriangleright Machine learning: dimensionality reduction graph – representation of data

▶ SP: Graph Signal Processing $graph - input/output$ association of data \implies generative, interpretable model

Low Pass GSP

 \triangleright SP cares about the frequency content in a (time domain) signal low frequency vs high frequency:

▶ Similar notion carries over to graph signal processing (GSP) low pass graph signals vs non low pass graph signals:

Takehome: Low pass graph signals are prevalent $+$ entail structure that enables (blind) graph topology learning.

Agenda

[Background](#page-4-0)

[Basics of GSP Models](#page-8-0)

[A Quick Introduction](#page-9-0)

[Low Pass Graph Signals](#page-13-0)

[Graph Learning from Network Data](#page-15-0) [Smoothness and Graph Learning](#page-17-0) [Low-rank Model and Graph Feature Learning](#page-19-0) [Learning with Partial Observation](#page-26-0)

[Beyond Inference Problems & Wrapping Up](#page-28-0)

Agenda

[Basics of GSP Models](#page-8-0) [A Quick Introduction](#page-9-0) [Low Pass Graph Signals](#page-13-0)

[Graph Learning from Network Data](#page-15-0) [Low-rank Model and Graph Feature Learning](#page-19-0)

Graph Data (output) $=$ Filter (system) $+$ Excitation (input)

• Consider a undirected graph $G = (V, E, \mathbf{A})$ **with N nodes** ! Goal: we identify *latent network structure* from *network data*.

▶ Graph signals = vectors defined on V , *i.e.*, $\mathbf{x} \in \mathbb{R}^N$.

 † as in signal processing, filter encodes the ${\sf response}$ s of a system to excitation.

 \triangleright We model the network dynamics generating the graph data by: linear time invariant $(T(T))$ filter = 'shift-invariant' + 'linear combination'.

Graph Filters

 \triangleright Network structure G is encoded in a matrix called graph shift operator

- ▶ Common choice is Laplacian matrix $\mathbf{L} = \text{Diag}(\mathbf{A1}) \mathbf{A}$
- ▶ The EVD of L is $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$ with $0 = \lambda_1 < \cdots < \lambda_N$.

 \triangleright Consider the graph filter as a matrix polynomial of \boldsymbol{L} :

$$
\mathcal{H}(\mathbf{L}) := \sum_{\ell=0}^{+\infty} h_{\ell} \mathbf{L}^{\ell}.
$$

Shift-invariant prop: $y = H(L)x \rightarrow Ly = LH(L)x \equiv H(L)Lx$

 \triangleright GSP Perspective: network data are filtered graph signals,

$$
\underbrace{\mathbf{y}}_{\text{output}} = \underbrace{\mathcal{H}(\mathbf{L})}_{\text{system input}} \mathbf{x} = \sum_{\ell=0}^{+\infty} h_{\ell} \mathbf{L}^{\ell} \mathbf{x}.
$$

 \triangleright The signal/observation is **y** while **x** is viewed as the **excitation**.

What are low and high frequencies basis on graph?

 $▶$ High frequency graph signal \rightarrow *large variation* in adjacent entries:

$$
S(\mathbf{x}) := \sum_{i,j} A_{ij} (x_i - x_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}.
$$

Intuition: if $S(x)$ is small, the graph signal x is smooth. It holds $\mathrm{S}(\boldsymbol{u}_i)=\boldsymbol{u}_i^{\top}\boldsymbol{L}\boldsymbol{u}_i=\lambda_i$, as seen:

 $\Rightarrow U = (u_1 u_2 \cdots u_N)$ form the right basis for graph signals on G.

Frequency Analysis via Graph Fourier Transform

▶ Graph Fourier Transform gives the frequency components of a signal:

$$
\tilde{\mathbf{y}} = \mathbf{U}^\top \mathbf{y} \longleftarrow \tilde{\mathbf{y}}_i = \langle \mathbf{u}_i, \mathbf{y} \rangle.
$$

 \triangleright The transfer/frequency response function of the graph filter is:

$$
\tilde{\boldsymbol{h}}=h(\boldsymbol{\lambda})\quad\text{where}\quad \tilde{h}_i=h(\lambda_i):=\sum_{\ell}h_{\ell}\lambda_i^{\ell}.
$$

Thus: $\mathcal{H}(\mathcal{L}) = \mathcal{U}h(\Lambda)\mathcal{U}^{\top}, h(\Lambda) = \text{Diag}(h(\lambda_1), ..., h(\lambda_n)).$

 \blacktriangleright We have the convolution theorem:

 $v = \mathcal{H}(L)x \Longleftrightarrow \tilde{v} = \tilde{h} \odot \tilde{x} \leftrightarrow \odot$ is element-wise product.

▶ Graph filter can be classified as either low-pass¹, band-pass, or high-pass, depending on its graph frequency response².

 1 E.g., an ideal low-pass $\tilde{h}_1,...,\tilde{h}_K=1$, $\tilde{h}_{K+1},...,\tilde{h}_N=0.$

²[\[Isufi et al., 2024\]](#page-38-0) E. Isufi, F. Gama, D. I Shuman, S. Segarra. Graph Filters for Signal Processing and Machine Learning on Graphs. TSP, 2022.

Low Pass Graph Filter (LPGF)

1 **Def.** For $1 \leq K \leq N-1$, define Freq. response $|h(\lambda)|$ 0.8 Freq. response |h(λ)| $\eta_K := \frac{\max\{|h(\lambda_{K+1})|, \ldots, |h(\lambda_N)|\}}{\min\{|h(\lambda_1)|, \ldots, |h(\lambda_K)|\}}.$ 0.6 0.4 If the low-pass ratio satisfies $\eta_K < 1$, 0.2 then $H(L)$ is K-low-pass. Ω $\overrightarrow{\lambda_K}$ $\overrightarrow{\lambda_{K+1}}$ \cdots $\overrightarrow{\lambda_n}$ $\lambda_1 \cdots \lambda_{\kappa}$

- \triangleright Integer K characterizes the *bandwidth*, or the cut-off frequency.
- \triangleright We say that **y** is K low pass signal provided that

 $y = H(L)x$, where $H(L)$ is K-low pass & x satisfies some mild cond..

▶ Graph frequencies are non-uniformly distributed: $\lambda_K \ll \lambda_{K+1}$ tends to induce K -low-pass filters, e.g., stochastic block model (SBM).

Physical Models lead to Low Pass Signals

Social Network Opinions³

- $\blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright$ = individuals, $E =$ friends.
- ▶ DeGroot model for opinions:

$$
\mathbf{y}_{t+1} = (1-\beta)\big(\mathbf{I} - \alpha \mathbf{L}\big)\mathbf{y}_t + \beta \mathbf{x}_t.
$$

▶ Observed steady state:

 $y_{\infty} = (I + \widetilde{\alpha}L)^{-1} x = \mathcal{H}(L)x,$

where $\tilde{\alpha} = \beta(1 - \alpha)/\alpha > 0$.

Prices in Stock Market⁴

- $\blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleright$ = financial inst., $E =$ ties.
- Business performances evolve as:

 $\mathbf{y}_{t+1} = (1 - \beta) \mathcal{H}(\mathbf{L}) \mathbf{y}_t + \beta \mathbf{B} \mathbf{x},$

e.g., stock return.

Observed steady state:

$$
\mathbf{y}_{\infty} = \left(\frac{1}{\beta}\mathbf{I} - \frac{\overline{\beta}}{\beta}\mathcal{H}(\mathbf{L})\right)^{-1}\mathbf{B}\mathbf{x}
$$

$$
= \widetilde{\mathcal{H}}(\mathbf{L})\mathbf{B}\mathbf{x}.
$$

Fact⁵: Both $\mathcal{H}(L)$, $\tilde{\mathcal{H}}(L)$ are low pass graph filters.

³[\[DeGroot, 1974\]](#page-38-1) M. H. DeGroot, Reaching a consensus. JASA, 1974.

⁴[\[Billio et al., 2012\]](#page-38-2) M. Billio et al., Econometric measures of connectedness and

systemic risk in the finance and insurance sectors, Journal of Economics Finance, 2012. ⁵[\[Ramakrishna et al., 2020\]](#page-39-0) R. Ramakrishna, **H.-T.**, A. Scalgione. A user guide to low-pass graph signal processing and its applications. SPM, 2020.

Agenda

[Graph Learning from Network Data](#page-15-0) [Smoothness and Graph Learning](#page-17-0) [Low-rank Model and Graph Feature Learning](#page-19-0) [Learning with Partial Observation](#page-26-0)

Graph Learning from Network Data

 \triangleright Goal: estimate L or some information about it.

 \blacktriangleright Working hypothesis: a number of graph signals $\mathbf{y}^{(t)}$ are available as ! Goal: we identify *latent network structure* from *network data*.

Unknown Graph

Observed Low Pass Graph Signals

Observed graph signals: $y^{(t)} \approx \mathcal{H}(L)x^{(t)} = \mathcal{H}(L)Bz^{(t)}, t = 0, ..., T - 1$

 $\mathcal{H}(\mathbf{L})$ is low pass, $\mathbf{z}^{(t)}$ is 0-mean, \mathbf{B} is **pattern** of excitation

• Graph learning relies on two properties of low pass signals:

- ▶ Smoothness \rightarrow graph topology learning.
- ▶ Low-rankness \rightarrow graph feature learning (e.g., community, centrality)

Smoothness and Graph Learning

• Insight: For K-low-pass graph signals $(\eta_K \ll 1)$ with full-rank excitation satisfying $B = I$, we observe that

$$
\mathbb{E}\big[\mathbf{y}_{\ell}^{\top} \mathbf{L} \mathbf{y}_{\ell}\big] \approx \sum_{i=1}^{K} \lambda_i |h(\lambda_i)|^2 + \sigma^2 \text{Tr}(\mathbf{L}) \stackrel{\text{low pass filter}}{\approx} 0,
$$

i.e., the low pass filtered graph signals are smooth w.r.t. L . \blacktriangleright Idea: Fit a graph optimizing for smoothness $(GL-SigRep)^6$:

$$
\min_{\mathbf{z}_{\ell}, \ell=1,...,m,\widehat{\mathbf{L}}}\quad \frac{1}{m}\sum_{\ell=1}^{m}\left\{\frac{1}{\sigma^2}||\mathbf{z}_{\ell}-\mathbf{y}_{\ell}||_2^2+\mathbf{z}_{\ell}^{\top}\widehat{\mathbf{L}}\mathbf{z}_{\ell}\right\} \leftarrow \text{note } \mathbf{z} \approx \mathbf{y}
$$
\n
$$
\text{s.t.} \quad \text{Tr}(\widehat{\mathbf{L}}) = N, \ \widehat{L}_{ji} = \widehat{L}_{ij} \leq 0, \ \forall \ i \neq j, \ \widehat{\mathbf{L}}\mathbf{1} = \mathbf{0},
$$

⁶[\[Dong et al., 2016\]](#page-38-3) X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, "Learning Laplacian matrix in smooth graph signal representations." TSP, 2016.

Numerical Experiment: GL-SigRep

 \blacktriangleright Topology learnt⁷ using GL-SigRep from the synthetic data generated through a low pass graph filter:

$$
\mathbf{y}_{\ell} = \sqrt{\boldsymbol{L}}^{-1} \mathbf{x}_{\ell}, \quad \mathbf{x}_{\ell} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),
$$

⁷Image credits: [\[Dong et al., 2016\]](#page-38-3).

Low-rank-ness and Graph Feature Learning

Issue: with low-rank excitation $(\mathbf{B} \in \mathbb{R}^{N \times R}$ with $R < N$) \longrightarrow graph learning = difficult ∵ data is nearly rank deficient...

Insight: Suppose $\mathcal{H}(L)$ is (η, K) low pass, then

 $\mathbf{C}_y = \mathbb{E}[\mathbf{y}\mathbf{y}^\top] = \mathcal{H}(\mathbf{L})\mathbf{U}\mathbf{C}_x\mathbf{U}^\top\mathcal{H}(\mathbf{L})^\top \approx \mathbf{U}_K\mathbf{C}_{\bar{x}}\mathbf{U}_K^\top$

where $\boldsymbol{C}_{\mathsf{x}} = \boldsymbol{B} \boldsymbol{B}^{\top}$, $\boldsymbol{U}_{\mathsf{K}} = (\boldsymbol{u}_1, ..., \boldsymbol{u}_\mathsf{K}) \in \mathbb{R}^{N \times K}$. \Rightarrow Thus C_v is also low rank!

- ▶ Approximation holds if $\eta \ll 1$ \Rightarrow low rank $\mathcal{H}(\cdot)$, rank $(H(L)) \approx K \ll N$ and range space $\approx U_K$.
- ▶ Idea: spectral method to extract principal components in U_K from C_v .

 \implies Can (still) learn **communities** and **centrality** of the graph.

Blind community detection (Blind CD)

Idea: spectral clustering applied on empirical covariance $\hat{C}_v \approx C_v$:

(i) find the top-k $\widehat{\bm{U}}_{\mathcal{K}} \in \mathbb{R}^{N \times K}$ of $\widehat{\bm{C}}_{\!\scriptscriptstyle (\!\mathcal{S}\!)} = \frac{1}{m} \sum_{\ell=1}^m \bm{y}_\ell \bm{y}_\ell^\top;$ (ii) apply k-means on the rows of $\hat{\bm{U}}_K$.

• Theorem: Denote the detected clusters as $\widehat{\mathcal{N}}_1, \ldots, \widehat{\mathcal{N}}_K$, then⁸

$$
\underline{\mathbb{K}}(\widehat{\mathcal{N}}_1,\ldots,\widehat{\mathcal{N}}_k;\boldsymbol{U}_K) - \underline{\mathbb{K}}^{\star}_{\text{k-mens obj. based on }\boldsymbol{U}_K} = \mathcal{O}(\eta_k + m^{-1/2}).
$$

 $\phi^{\dagger} \rightarrow$ performance of spectral clustering (with known topology) if $\eta_k \rightarrow 0$.

▶ Learning of high-level structure is **robust** to low-rank excitation.

⁸[\[Wai et al., 2019\]](#page-39-1) **H.-T.**, S. Segarra, A. Ozdaglar, A. Scaglione, A. Jadbabaie, "Blind community detection from low-rank excitations of a graph filter," TSP, 2019.

Numerical Experiment: Blind CD (+Boosting)

(a) As $R = \text{rank}(\mathcal{C}_x)$ increases, Blind CD approaches the performance of spectral clustering on the true GSO.

Blind Centrality Learning

Eigen-centrality = $\text{TopEV}(A)$ is revealed by $\text{TopEV}(C_v)$ for 1-low **pass** signals \implies a simple PCA procedure suffices:

Theorem⁹: let v_1 be the true eig. centrality,

$$
\|\hat{\mathbf{v}}_1 - \mathbf{u}_1\|_2 = \mathcal{O}(\eta_1 + m^{-1/2}).
$$

⁹[\[He and Wai, 2022\]](#page-38-4) Y. He, **H.-T.**, "Detecting central nodes from low-rank excited graph signals via structured factor analysis," TSP, 2022 \leftarrow note GSO = **A** in this case.

Numerical Experiment: Blind Centrality Learning

- ▶ Graph filter $\mathcal{H}(\cdot)$ is (left) 'weak' low pass, i.e., $\eta \approx 1$; (right) 'strong' low pass, i.e., $\eta \ll 1$.
- ▶ Proposed Algorithm 1 with NMF outperforms SOTA in the considered setting for 'weak' low pass; and similarly as PCA for 'strong' low pass.

Numerical Experiment: Blind Centrality Learning

(left) 'Strong' low pass, (right) 'Weak' low pass

Numerical Experiment: Blind Centrality Learning

⁴⁺The number below each stock/state shows its normalized correlation score with the S&P100 index and number of 'Yay's in the voting result [cf. (36)]. The average correlation scores are taken over the set of central nodes found and the number after ' \pm ' is the standard deviation.

(a) Detected central nodes with performance measured on correlation of nodes with (left) S&P500 index, (right) voting outcomes.

Leveraging Low-passness with Partial Observation

▶ In many settings, we do not observe **complete graph signals** on every nodes, e.g., large social network, power network, etc.

 \blacktriangleright Hidden nodes remain **influential** and affect the observations:

$$
\textbf{y} = \mathcal{H}(\textbf{L})\textbf{x} \quad \text{with} \quad \textbf{y} = \left[\begin{array}{c} \textbf{y}_{\text{obs}} \\ y_{\text{hid}} \end{array} \right], \ \ \textbf{L} = \left[\begin{array}{cc} \textbf{L}_{\text{o,o}} & \textbf{L}_{\text{o,h}} \\ \textbf{L}_{\text{h,o}} & \textbf{L}_{\text{h,h}} \end{array} \right]
$$

Learning with Partial Observation

▶ Goal: infer about the subgraph of observable nodes, L_{tot} :

$$
\mathbf{y} = \mathcal{H}(\mathbf{L})\mathbf{x} = \left[\begin{array}{c} \mathbf{y}_{\text{obs}} \\ y_{\text{hid}} \end{array}\right], \ \ \mathbf{C}_{\mathbf{y}} = \left[\begin{array}{cc} \mathbf{C}_{\mathbf{y}}^{\text{o}} & C_{\mathbf{y}}^{\text{o},\text{h}} \\ C_{\mathbf{y}}^{\text{h}}, \text{ } & C_{\mathbf{y}}^{\text{h}} \end{array}\right], \ \ \mathbf{L} = \left[\begin{array}{cc} \boxed{\mathbf{L}_{\text{o},\text{o}}} & L_{\text{o},\text{h}} \\ \boxed{L_{\text{h},\text{o}}} & L_{\text{h},\text{h}} \end{array}\right]
$$

Leveraging Lowrank-ness: provided $\mathcal{H}(L)$ is (η, K) low pass,

$$
\boldsymbol{C}_{\mathsf{y}}^{\circ} = \boldsymbol{E}_{\mathsf{o}} \boldsymbol{C}_{\mathsf{y}} \boldsymbol{E}_{\mathsf{o}}^{\top} \approx (\boldsymbol{E}_{\mathsf{o}} \boldsymbol{U}_{\mathsf{K}}) \boldsymbol{C}_{\tilde{\mathsf{x}}} (\boldsymbol{E}_{\mathsf{o}} \boldsymbol{U}_{\mathsf{K}})^{\top}
$$

where \bm{E}_{o} is row-selection matrix for $V_{obs} \, \uparrow$ can estimate $\bm{E}_{o} \bm{U}_{K} \approx \bm{U}_{K,o}$

- Exercise Key observation: low-rankness of $H(L)$ supersedes partial obs.
- ▶ Straightforward extension for graph feature learning: partial community detection¹⁰, partial centrality inference¹¹

¹⁰[\[Wai et al., 2022\]](#page-39-2) H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, "Community Inference From Partially Observed Graph Signals: Algorithms and Analysis", TSP, 2022. 11 [\[He and Wai, 2023\]](#page-38-5) Y. He, **H.-T.**, Central nodes detection from partially observed graph signals, in ICASSP 2023.

Agenda

- -
	-
- [Graph Learning from Network Data](#page-15-0)
	-
	- [Low-rank Model and Graph Feature Learning](#page-19-0)
	-

[Beyond Inference Problems & Wrapping Up](#page-28-0)

Detecting Low-pass Signals

Question: How do we know if a set of graph signals are low pass?

▶ Topology inferred from non low pass signals can be deceptive.

(a) Ground truth. (b) Topology learnt by GL-SigRep on non-low-pass signals.

- \triangleright Challenges: graph topology **A** and filter $\mathcal{H}(\mathbf{A})$ are unknown.
- \triangleright Warning: an ill posed problem graph signals is smooth on one graph, but non-smooth on another.

Detecting Low-pass Signals

- **Assume:** no. of dense clusters, K , in the graph is known a-priori. $\Rightarrow \lambda_1, \ldots, \lambda_K \approx 0 \Rightarrow$ if the filter is low pass, it will be K low pass.
- **Observation**: graph signals from K low pass filter exhibit particular spectral signature. E.g., SBM graph with $K = 3$ clusters,

Idea: Measure *clusterability* of principal eigenvectors.

Application: Robustifying Graph Learning

What if graph signals are corrupted with non-low-pass observations? \implies screen them out by a blind detector and apply [\[Dong et al., 2016\]](#page-38-3).

- (a) Ground truth graph learnt from clean data.
- (b) Graph learnt from **corrupted** data (mixed $w/$ high-pass signals).
- (c) Graph learnt after the **pre-screening** procedure.
	- **Other applications:** blind detection of network dynamics, blind anomaly detection, etc. 12

 12 [\[Zhang et al., 2024\]](#page-39-3) C. Zhang, Y. He, H.-T.. Detecting Low Pass Graph Signals via Spectral Pattern: Sampling Complexity and Applications. TSP, 2024.

Detecting Low-pass Signals w/ Partial Observations

$$
\mathbf{y} = \mathcal{H}(\mathbf{L})\mathbf{x} = \left[\begin{array}{c} \mathbf{y}_{\text{obs}} \\ y_{\text{hid}} \end{array}\right], \ \ \mathbf{C}_{\mathbf{y}} = \left[\begin{array}{cc} \mathbf{C}_{\mathbf{y}}^{\text{o}} & C_{\mathbf{y}}^{\text{o},\text{h}} \\ C_{\mathbf{y}}^{\text{h}} & C_{\mathbf{y}}^{\text{h}} \end{array}\right], \ \ \mathbf{L} = \left[\begin{array}{cc} \boxed{\mathbf{L}_{\text{o},\text{o}}} & L_{\text{o},\text{h}} \\ \boxed{L_{\text{h},\text{o}}} & L_{\text{h},\text{h}} \end{array}\right]
$$

 \triangleright Observation: the *spectral signature* is preserved even in partially observed low-pass graph signals, E.g., SBM graph with $K = 3$ clusters,

Measuring *clusterability* of principal eigenvectors still works.

Application: Robustifying Partial Blind CD

What if partial graph signals are corrupted with non-low-pass observations? \Rightarrow screen them out by a blind detector and apply $[Wa$ et al., 2022].

Fig. 3. Comparing blind community detection performance vs. (left) no. of observed nodes $n (p_s = 1)$, (right) corrupted portion of signals $p_s (n = 50)$.

▶ Other applications: blind detection of network dynamics, blind anomaly detection, etc. with only partial observations¹³

¹³[\[Nguyen and Wai, 2024\]](#page-39-4) H.-S., H.-T., "On Detecting Low-pass Graph Signals under Partial Observations", in SAM, 2024.

Stability of Graph Filter with Edge Rewiring

- ▶ Graph filter is an important building block of Graph Convolutional *Neural Network (GCN)* \rightarrow trained on $\mathcal{H}(L)$, but applied on $\mathcal{H}(L)$.
- \blacktriangleright Stability¹⁴ is related to *transferability* of GCNs. Existing results require small no. of edge rewires.

Frequency-domain bound: If $H(L)$ is low pass, then

$$
\|\mathcal{H}(\mathbf{L}) - \mathcal{H}(\hat{\mathbf{L}})\| = \mathcal{O}(\eta + \|\mathbf{U}_k - \hat{\mathbf{U}}_k\| + \|\mathbf{\Lambda}_k - \hat{\mathbf{\Lambda}}_k\|),
$$

where $\bm{U}_k-\hat{\bm{U}}_k$, $\bm{\Lambda}_k-\hat{\bm{\Lambda}}_k$ are perturbations of top eigenvectors/values.

▶ Residuals \rightarrow 0 for edge rewiring on SBMs perturbations¹⁵.

¹⁴[\[Gama et al., 2020\]](#page-38-6) F. Gama, J. Bruna, A. Ribeiro. Stability properties of graph neural networks. TSP, 2020.

 15 [\[Nguyen et al., 2022\]](#page-38-7) H.-S., Y. He, H.-T., "On the stability of low pass graph filter with a large number of edge rewires," in ICASSP, 2022.

Stability of Graph Filter with Edge Rewiring

Frequency-domain bound: If $H(L)$ is low pass, then

$$
\|\mathcal{H}(\mathbf{L}) - \mathcal{H}(\hat{\mathbf{L}})\| = \mathcal{O}(\eta + \|\mathbf{U}_k - \hat{\mathbf{U}}_k\| + \|\mathbf{\Lambda}_k - \hat{\mathbf{\Lambda}}_k\|),
$$

where $\bm{U}_k-\hat{\bm{U}}_k$, $\bm{\Lambda}_k-\hat{\bm{\Lambda}}_k$ are perturbations of top eigenvectors/values.

▶ Low pass filters are *insensitive* to no. of rewiring vs. high pass filters.

Wrapping Up

- \triangleright Takehome Point: Low pass graph signals are prevalent $+$ entail structure that enables (blind) graph topology learning.
	- ▶ Smoothness \rightarrow graph topology learning.
	- ▶ Low-rankness \rightarrow topology feature learning (centrality, community).
	- \blacktriangleright also for learning from partial observation, ...
- ▶ Related problems: how to detect low pass signals, application to machine learning on graph, ...

Thank you!

Questions & comments are welcomed.

An (old) tutorial can be found here: [arxiv.org/abs/2008.01305](https://arxiv.org/pdf/2008.01305.pdf)

GRAPH SIGNAL PROCESSING: URAFH SIUNAL FRUCESSINU:
FOUNDATIONS AND EMERGING DIRECTIONS

Raksha Ramakrishna, Hoi-To Wai, and Anna Scaalione

A User Guide to Low-Pass Graph Signal Processing and Its Applications

Tools and applications

he notion of graph filters can be used to define generative models for graph data. In fact, the data obtained from many examples of network dynamics may be viewed as the output of a graph filter. With this interpretation, classical signal processing tools, such as frequency analysis, have been successfully applied with analogous interpretation to graph data, generating new insights for data science. What follows is a user guide on a specific class of graph data, where the generating graph filters are low pass: i.e., the filter attenuates contents in the higher .
In the collects would be a consequent to star torring for

References

[Billio et al., 2012] Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of financial economics, 104(3):535–559.

[DeGroot, 1974] DeGroot, M. H. (1974).

Reaching a consensus. Journal of the American Statistical association, 69(345):118–121.

[Dong et al., 2016] Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). Learning Laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process., 64(23):6160–6173.

[Gama et al., 2020] Gama, F., Bruna, J., and Ribeiro, A. (2020). Stability properties of graph neural networks. IEEE Transactions on Signal Processing, 68:5680–5695.

[He and Wai, 2022] He, Y. and Wai, H.-T. (2022). Detecting central nodes from low-rank excited graph signals via structured factor analysis. IEEE Transactions on Signal Processing.

[He and Wai, 2023] He, Y. and Wai, H.-T. (2023). Central nodes detection from partially observed graph signals. In ICASSP. IEEE.

[Isufi et al., 2024] Isufi, E., Gama, F., Shuman, D. I., and Segarra, S. (2024). Graph filters for signal processing and machine learning on graphs. IEEE Transactions on Signal Processing, pages 1–32.

[Nguyen et al., 2022] Nguyen, H.-S., He, Y., and Wai, H.-T. (2022). On the stability of low pass graph filter with a large number of edge rewires. In IEEE ICASSP.

[Nguyen and Wai, 2024] Nguyen, H.-S. and Wai, H.-T. (2024). On detecting low-pass graph signals under partial observations. In 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 1–5.

[Ramakrishna et al., 2020] Ramakrishna, R., Wai, H.-T., and Scaglione, A. (2020). A user guide to low-pass graph signal processing and its applications. IEEE Signal Processing Magazine.

[Wai et al., 2022] Wai, H.-T., Eldar, Y. C., Ozdaglar, A. E., and Scaglione, A. (2022). Community inference from partially observed graph signals: Algorithms and analysis. IEEE Transactions on Signal Processing, 70:2136–2151.

[Wai et al., 2019] Wai, H.-T., Segarra, S., Ozdaglar, A. E., Scaglione, A., and Jadbabaie, A. (2019). Blind community detection from low-rank excitations of a graph filter. IEEE Transactions on signal processing, 68:436–451.

[Zhang et al., 2024] Zhang, C., He, Y., and Wai, H.-T. (2024). Detecting low pass graph signals via spectral pattern: Sampling complexity and applications. IEEE Transactions on Signal Processing, 72:3347–3362.