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Our Group at CUHK

> We're from Department of Systems Engineering and Engineering
Management at The Chinese University of Hong Kong.

» Our department focuses on financial engineering, information systems,
logistics and supply chain management, and operations research.

» Beautiful campus by the sea, surrounded by lots of greens and hiking trails.
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Our Group at CUHK

» Hong Kong is a vibrant global financial hub: a mix of Western and Chinese
culture, country parks and skyscrapers; just under 2hr of flight from Hanoi.

» Lots of opportunities for funded postgraduate studies for non-local students.

» Come visit us sometime!
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Our Group at CUHK

» Our team is advised by Prof. Hoi-To Wai, working in:

» graph signal processing and graph learning for network science, and
» stochastic and distributed algorithms for machine learning, signal
processing, and control.

» Today I'll talk about our recent works on graph signal processing.
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Motivation: Network (Graph) Data

mammary epithelium mammary gland

o -
.

» Graph signal processing (GSP): tool to
analyze network data (graph signals).

» Data-generating processes affected by
network structure: social, economic,
biological, energy, transportation, etc.
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Dealing with Network Data

raunn
e =g

» Statistics: Gaussian Markov random fields,
graphical models
graph — statistical association of data

» Machine learning: dimensionality reduction
graph — representation of data

» SP: Graph Signal Processing
graph — input/output association of data
= generative, interpretable model
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Low Pass GSP

» SP cares about the frequency content in a (time domain) signal —
low frequency vs high frequency:

/\/\/\/Low Frequency

» Similar notion carries over to graph signal processing (GSP) —
low pass graph signals vs non low pass graph signals:

)\1 =0 )\2 =0.4706 /\10 =5.2813 /\15 =8.0818

<

L

Takehome: Low pass graph signals are prevalent + entail structure that

enables (blind) graph topology learning. J
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Graph Data (output) = Filter (system) 4+ Excitation (input)

» Consider a undirected graph G = (V, E, A) with N nodes

HEEE
— EoN
obs. on nodes | M =
Excitation ——> / —> 4 [F
/ i H
— Il }

» Graph signals = vectors defined on V, i.e., x € RN,

. Cfilter' .
excitation ——— signal

fas in signal processing, filter encodes the responses of a system to excitation.

» We model the network dynamics generating the graph data by:
linear time invariant owny filter = ‘shift-invariant’ + ‘linear combination’.
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Graph Filters

» Network structure G is encoded in a matrix called graph shift operator

» Common choice is Laplacian matrix L = Diag(Al) —
» The EVD of Lis L= UAU" with0=X; < - < Ay.

» Consider the graph filter as a matrix polynomial of L:

+0oo
L):= Z hyL’.
£=0

Shift-invariant prop: y = H(L)x — Ly =LH(L)x = H(L)Lx

» GSP Perspective: network data are filtered graph signals,

— £
2 M =Tt

output system input

» The signal/observation is y while x is viewed as the excitation.
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What are low and high frequencies basis on graph?

» High frequency graph signal — /large variation in adjacent entries:

S(x) = ¥, Au(xi — )2 = x Lx.

» Intuition: if S(x) is small, the graph signal x is smooth. It holds
S(u;) = u;" Lu; = )\;, as seen:

A =0 A, =0.4706 A =52813 A5 =80818

05

ul e _> PRI uN
~~ ~~~
lowest frequency highest frequency

= U = (u; up --- up) form the right basis for graph signals on G.
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Frequency Analysis via Graph Fourier Transform

» Graph Fourier Transform gives the frequency components of a signal:

y=U"y 3= (uy).
» The transfer/frequency response function of the graph filter is:
h=h(\) where b =h(\):=3,h\
Thus: H(L) = Uh(A)U", h(A) = Diag(h(\1), ..., h(An)).
» We have the convolution theorem:
y=H(L)x < j=h®% « ©is element-wise product.

» Graph filter can be classified as either low-pass!, band-pass, or

high-pass, depending on its graph frequency response?.

1E g., an ideal low-pass b, ..., hx = 1, I~7K+1,.,.,l~7N =0.
2[Isufi et al., 2024] E. Isufi, F. Gama, D. | Shuman, S. Segarra. Graph Filters for
Signal Processing and Machine Learning on Graphs. TSP, 2022.
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Low Pass Graph Filter (LPGF)

1,

Def. For 1 < K < N — 1, define =081
nK_::'“ax{|hCXK+1)L---7|h(AN)I} % 06
min{|h(A1)], ..., |h(Ak)|} g 04-

If the low-pass ratio satisfies nx < 1, £ 02-
then H(L) is K-low-pass. 04

RV A
» Integer K characterizes the bandwidth, or the cut-off frequency.
» We say that y is K low pass signal provided that

y =H(L)x, where H(L) is K-low pass & x satisfies some mild cond..

> Graph frequencies are non-uniformly distributed: Ax < Ak11 tends
to induce K-low-pass filters, e.g., stochastic block model (SBM).
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Physical Models lead to Low Pass Signals

3 Prices in Stock Market*

» V/ = financial inst., E = ties.

Social Network Opinions

» V = individuals, E = friends. _
» Business performances evolve as:

yerr = (1= B)H(L)y: + BBx,

e.g., stock return.

» DeGroot model for opinions:

Yer1 = (1=B) (I —aL)y:+Bx:.

> Observed steady state: » Observed steady state:
B -1 3 ~1
Yoo = (I +al) " x =H(L)x, Yoo = (51— 5H(L))  Bx
where @ = 8(1 — a)/a > 0. — H(L)Bx.

Fact®: Both #H(L), #(L) are low pass graph filters. ]

3[DeGroot, 1974] M. H. DeGroot, Reaching a consensus. JASA, 1974.

4[Billio et al., 2012] M. Billio et al., Econometric measures of connectedness and
systemic risk in the finance and insurance sectors, Journal of Economics Finance, 2012.

5[Ramakrishna et al., 2020] R. Ramakrishna, H.-T., A. Scalgione. A user guide to

low-pass graph signal processing and its applications. SPM, 2020.
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Graph Learning from Network Data

» Goal: estimate L or some information about it.

» Working hypothesis: a number of graph signals y(*) are available as

- A L
GSP model oI x|
ALy g
— M gEgE s
Unknown Graph Observed Low Pass Graph Signals

Observed graph signals: y) ~ 7(L)x) = H(L)Bz"), t =0,... T -1
— H(L) is low pass, z(*) is 0-mean, B is pattern of excitation J

» Graph learning relies on two properties of low pass signals:

» Smoothness — graph topology learning.
> Low-rankness — graph feature learning (e.g., community, centrality)
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Smoothness and Graph Learning

» Insight: For K-low-pass graph signals (nx < 1) with full-rank
excitation satisfying B = I, we observe that

low pass filter

Ely, Ly] ~ ZMh )P +0Tr(L) =

i.e., the low pass filtered graph signals are smooth w.r.t. L.
» Idea: Fit a graph optimizing for smoothness (GL-SigRep)®:

min 137, {%HZ[ —yill3 + ZJLZ[} < note z X/ y
zp,0=1,....m,L

st. T(L)=N, L =1;<0,Vi#j, L1=0,

6[Dong et al., 2016] X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations.” TSP, 2016.
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Numerical Experiment: GL-SigRep

15 15
h 1
5 5
os los
5 10 15 20 5 10 15 20

(f) ER: Groundtruth (g) ER: GL-SigRep (h) ER: GL-LogDet

15

» Topology learnt” using GL-SigRep from the synthetic data generated
through a low pass graph filter:

Yo = \/Z_lxea Xy ~ N(oa I)’

"Image credits: [Dong et al., 2016].
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Low-rank-ness and Graph Feature Learning

Issue: with low-rank excitation (B € RV*R with R < N) — graph
learning = difficult *.- data is nearly rank deficient...

» Insight: Suppose H(L) is (1, K) low pass, then

Cy == E[ny]: H(L) UCX UTH(L)T ~ UKC)’Z U;(r 5 Only a few nodes %

can be excited!

where C, = BB, Uk = (uy, ..., ug) € RNXK, / /‘
= Thus C, is also low rank! A

/’/?/ “‘

» Approximation holds if n < 1 = low rank #(-),
rank(#H(L)) ~ K < N and range space ~ U.

» Idea: spectral method to extract principal
components in Uk from C,.

= Can (still) learn communities and centrality of the graph.
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Blind community detection (Blind CD)

Idea: spectral clustering applied on empirical covariance C, ~ C,:

(i) find the top-k Ux € RVXK of C;, =L vy
(i) apply k-means on the rows of Uk.

» Theorem: Denote the detected clusters as J\Afl, e ,/\AfK, then®

K(?\A‘“’l ------ Ni; Uk) — K* =O(nk + m71/2).

K-means obj. based on Uy Optimal K-means obj.

T — performance of spectral clustering (with known topology) if 1, — 0.

» Learning of high-level structure is robust to low-rank excitation.

8[Wai et al., 2019] H.-T., S. Segarra, A. Ozdaglar, A. Scaglione, A. Jadbabaie,

“Blind community detection from low-rank excitations of a graph filter,” TSP, 2019.
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Numerical Experiment: Blind CD (+Boosting)

T
107 -+ SCon S
-©-BlindCD
‘ -A- Boosted ]
Sy -®- 2-step w/ SpecTemp | |
] —1]
T 0
o
S
L]
1072 e
E----B---Bb---{3----B----Bb---E----8----F]
'E\') I I I I I 1

ik ik
10 15 20 25 30 35 40 45
Excitation Rank R

(a) As R = rank(Cy) increases, Blind CD approaches the performance
of spectral clustering on the true GSO.
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Blind Centrality Learning

> Eigen-centrality is revealed by TopEV(C,) for 1-low
pass signals = a simple PCA procedure suffices:

1 m
/ [Cy:iﬂw ]
t=1
Sample Covariance
; P(y

~ . = ." L

vy =TopEV(G) | —— " T el
Y=[y1 ¥ml Centrality Estimation 2 F N ]
Observation Detected K possible

central nodes

» Theorem?: let v; be the true eig. centrality,

101 — w2 = O(n + m~1/2).

9[He and Wai, 2022] Y. He, H.-T., “Detecting central nodes from low-rank excited

graph signals via structured factor analysis,” TSP, 2022 < note GSO = A in this case.
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Numerical Experiment: Blind Centrality Learning

-© RPCA (31) &+ Algorithm 1 LapLearn [18] =< KNN
—— PCA(12) SpectTemp [19] <5~ Smooth [38]

11— —P—p 11— —8—B——x" —
a: 0.6 0.8
0.8 X 0.8
N T T - F

@ o
® 06 0.6 © —o—o &
s s" 0.4
04 F 04 i}
02 ‘0‘\ 02
QO
hol =
0 - . 0 g\\'& = o—f - 0 - -
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Dim. of latent factor & Dim. of latent factor & Dim. of latent factor & Dim. of latent factor &
Core—periphery graph Barabasi-Albert graph

» Graph filter H(-) is (left) ‘weak’ low pass, i.e., n = 1; (right) ‘strong’
low pass, i.e., n < 1.

» Proposed Algorithm 1 with NMF outperforms SOTA in the considered
setting for ‘weak’ low pass; and similarly as PCA for ‘strong’ low pass.
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Numerical Experiment: Blind Centrality Learning

<> ground truth 7, < ground truth 7
® PCA A ® PCA ~
® Algorithm 1 ® Algorithm 1

(left) ‘Strong' low pass, (right) ‘Weak’ low pass
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Numerical Experiment: Blind Centrality Learning

(a) Stock Dataset’

(b) Senate Dataset’

Method Top-10 Estimated Central Stocks (sorted left-to-right) Method Top-10 Estimated Central States (sorted left-to-right)
Algorithm 1 A1 ACN  HON AXP IBM DIS ORCL MMM BRKB COST Algorithm 1 MI MT KS RI TN MN NV ME MD IN
043 056 051 072 050 036 070 033 052 064 079 0.66 0.74 0.67 0.68 0.74 043 0.67 0.6 0.62
Average Correlation Score: 0.53 + 0.133 Average Correlation Score: 0.66 + 0.099
PCA (11) NVDA NFLX AMZN ADBE PY CAT GOOG BA GOOGL PCA (11) CA DE CO IL ND WV IA VA WY MA
0.56 060 068 063 065 027 067 063 028 063 0.55 046 0.54 0.63 072 052 051 056 059 0.58
Average Correlation Score: 0.56 + 0.154 Average Correlation Score: 0.57 + 0.072
GL-SigRep GOOGL GOOG LLY  UsB  EMR DUK ORCL GD  VZ V GLSigRep CA DE WV CO IL VA ND IA WY AZ
[13] 0.63 0.63 0.17 0.43 059 011 070 053 0.27 0.71 [131 0.55 0.46 0.52 0.54 0.63 0.56 0.72 051 0.59 0.31
Average Correlation Score: 0.48 + 0.22 2 0.54 = 0.108
KNN ACN HON ALL BRKB IBM AXP EMR MMM CSCO XOM KNN AZ CO WY 1A
0.56 0.51 0.43 0.52 050 072 059 033 0.63 0.55 0.72 055 0.63 0.52 046 0.56 031 0.54 059 0.51
Average Correlation Score: 0.53 £ 0.107 Average Correlation Score: 0.54 + 0.108
SpecTemp ACN  ORCL PG LLY SUBX PVl MDLZ FB PFE  MRK SpecTemp AL ND WV CA DE IL MO MA VA SD
[14] 0.56 070 0.36 0.17 0.58 065 041 0.61 0.14 0.20 [14] 0.61 0.72 0.52 0.55 046 0.63 057 058 0.56 0.56
Average Correlation Score: 0.44 £ 0.211 Average Correlation Score: 0.58 £ 0.069
Kalofolias  ACN  HON _ BRKDB ALL P IBM XOM KO U5 COST Kalofolias AL AK AZ AR WV VA CA CO CT DE
[44] 0.56 051 0.52 0.43 072 050 055 032 043 0.64 [44] 0.61 0.63 0.31 047 052 056 055 0.54 045 046
Average Correlation Scor 0.112 Average Correlation Scor 51 & 0.093
Tnformation Technology/ Communication Services/ Industrials/ Financial-/other sectors, Republican/ Democral/ Mixed.

*#IThe number below each

shows its

scores are taken over the set of central nodes found and the number after ‘+" is the standard deviation.

score with the S&P100 index and number of *Yay’s in the voting result [cf. (36)]. The average correlation

(a) Detected central nodes with performance measured on correlation
of nodes with (left) S&P500 index, (right) voting outcomes.
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Leveraging Low-passness with Partial Observation

» In many settings, we do not observe complete graph signals on every
nodes, e.g., large social network, power network, etc.

» Hidden nodes remain influential and affect the observations:

Lo,o Lo,h :|

y=H(L)x with y= [ Yobs ], L= [
Lo Lpp

Observed Vs & sub-graph L,

Sub-graph Ly,

Hidden Wiiq & sub-graph Ly
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Learning with Partial Observation

> Goal: infer about the subgraph of observable nodes, L, .:
° L
onn=[2] 6= & ] e[ ]

Leveraging Lowrank-ness: provided H(L) is (1, K) low pass,

C = E,C,E; ~ (E,Ux)Cx(E,Uk)"
where E, is row-selection matrix for Vops. 1 can estimate E,Ux ~ Uk,

> Key observation: low-rankness of 7(L) supersedes partial obs.

» Straightforward extension for graph feature learning: partial
community detection®, partial centrality inference!?

O[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, " Community Inference
From Partially Observed Graph Signals: Algorithms and Analysis”, TSP, 2022.

11[He and Wai, 2023] Y. He, H.-T., Central nodes detection from partially observed
graph signals, in ICASSP 2023.
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Detecting Low-pass Signals

Question: How do we know if a set of graph signals are low pass?

» Topology inferred from non low pass signals can be deceptive.

(a) Ground truth. (b) Topology learnt by GL-SigRep on non-low-pass signals.

» Challenges: graph topology A and filter 7(A) are unknown.

» Warning: an ill posed problem — graph signals is smooth on one
graph, but non-smooth on another.

28/36



Detecting Low-pass Signals

» Assume: no. of dense clusters, K, in the graph is known a-priori.
= A1,..., Ak &~ 0 = if the filter is low pass, it will be K low pass.

» Observation: graph signals from K low pass filter exhibit particular
spectral signature. E.g., SBM graph with K = 3 clusters,

0.4

value [v;];

— V55

T T
0 20 40 60 8 100 120
sorted index j

Idea: Measure clusterability of principal eigenvectors. J

29/36



Application: Robustifying Graph Learning

What if graph signals are corrupted with non-low-pass observations? —>
screen them out by a blind detector and apply [Dong et al., 2016]. J

@ © ©
(a) Ground truth graph learnt from clean data.

(b) Graph learnt from corrupted data (mixed w/ high-pass signals).

(c) Graph learnt after the pre-screening procedure.

» Other applications: blind detection of network dynamics, blind
anomaly detection, etc.!?

12[Zhang et al., 2024] C. Zhang, Y. He, H.-T.. Detecting Low Pass Graph Signals via

Spectral Pattern: Sampling Complexity and Applications. TSP, 2024.
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Detecting Low-pass Signals w/ Partial Observations

y:H(L)X:[yObS:|,Cy:|: Cy :|7L: Lo,o

» Observation: the spectral signature is preserved even in partially
observed low-pass graph signals, E.g., SBM graph with K = 3 clusters,

Spectral Pattern of Fully Observed Graph Spectral Pattern of Partially Observed Graph (50.0% of nodes)
020{— vo o3{_ o
v
—w
o151 — 7 02
—w

o 50 00 150 200 250 300 0 20 40 60 80 100 120 140
Sorted index Sorted index

Measuring clusterability of principal eigenvectors still works. )
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Application: Robustifying Partial Blind CD

What if partial graph signals are corrupted with non-low-pass observations?
— screen them out by a blind detector and apply [Wai et al., 2022]. J

100 ¢
- @ Corrupted + [12]
Pre-screen + [12] "

107t = o Non-corrupted + [12]

Error Rate

[T R T R R
ooooo0o90o90Q
HDITLONDO O

No. of observed nodes n Corrupted portion of a signal ps

Fig. 3. Comparing blind community detection performance vs. (left) no. of
observed nodes n (ps = 1), (right) corrupted portion of signals ps (n = 50).

» Other applications: blind detection of network dynamics, blind
anomaly detection, etc. with only partial observations!3

B3[Nguyen and Wai, 2024] H.-S., H.-T., “On Detecting Low-pass Graph Signals under
Partial Observations”, in SAM, 2024.
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Stability of Graph Filter with Edge Rewiring

» Graph filter is an important building block of Graph Convolutional
Neural Network (GCN) — trained on (L), but applied on H(L).

» Stability'* is related to transferability of GCNs. Existing results
require small no. of edge rewires.

Frequency-domain bound: If H(L) is low pass, then
1H(L) = H(L)| = O + Uk — O]l + [ Ax — A,

where Uy — Uk, Ay — Ak are perturbations of top eigenvectors/values.

» Residuals — 0 for edge rewiring on SBMs perturbations!®.

14[Gama et al., 2020] F. Gama, J. Bruna, A. Ribeiro. Stability properties of graph
neural networks. TSP, 2020.
5[Nguyen et al., 2022] H.-S., Y. He, H.-T., “On the stability of low pass graph filter

with a large number of edge rewires,” in ICASSP, 2022.
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Stability of Graph Filter with Edge Rewiring

Frequency-domain bound: If H(L) is low pass, then
(L) — H(L)|| = O(n + [|Uic — Ol + || Ak — Axl]),

where Uj — Uk, Ay — Ak are perturbations of top eigenvectors/values.

e

D 10?
1020 -

(5 10! =
5 10 ® exp(Lyy /logn) E ( ®exp(0.1Lyy / logn)
e/ 10 ® exp(—Lg /logn) 100 = @exp(—0.1Lg; /logn)
x =
g -
1071 =
109 — g—o—o—o—0 E
| | | | | - | | | |
001 005 01 015 02 001 005 01 015 02
Rewiring ratio pre Rewiring ratio pye

» Low pass filters are insensitive to no. of rewiring vs. high pass filters.
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Wrapping Up

\ obs. on nodes M M [
Excitation —> / —> [
L mif B
—
H ENR

» Takehome Point: Low pass graph signals are prevalent + entail
structure that enables (blind) graph topology learning.

» Smoothness — graph topology learning.
» Low-rankness — topology feature learning (centrality, community).

» also for learning from partial observation, ...

» Related problems: how to detect low pass signals, application to
machine learning on graph, ...
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Thank you!

Questions & comments are welcomed.
An (old) tutorial can be found here: arxiv.org/abs/2008.01305

GRAPH SIGNAL PROCESSING:
FOUNDATIONS AND EMERGING DIRECTIONS

Raksha Ramakrishna, Hoi-To Wai, and Anna Scaglione

A User Guide to Low-Pass Graph Signal Processing
and Its Applications

Tools and applications

models for graph data. In fact, the data obtained from many

examples of network dynamics may be viewed as the output
raph filter. With this interpretation, classical signal pro-

ssing tools, such as frequency analysis, have been successfi

applied with analogous interpretation to graph dat

new insights for data science. What follows is a u

Tm notion of graph filters can be used to define generative
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