Graph Learning with Low-pass Graph Signal Processing

Hoang-Son Nguyen

Department of SEEM, The Chinese University of Hong Kong **Thanks:** Prof. Hoi-To Wai for the slide materials

13 September 2024, Talk at ORLab-SLSCM Center

Our Group at CUHK

- We're from Department of Systems Engineering and Engineering Management at The Chinese University of Hong Kong.
- Our department focuses on financial engineering, information systems, logistics and supply chain management, and operations research.
- Beautiful campus by the sea, surrounded by lots of greens and hiking trails.

Our Group at CUHK

- Hong Kong is a vibrant global financial hub: a mix of Western and Chinese culture, country parks and skyscrapers; just under 2hr of flight from Hanoi.
- Lots of opportunities for funded postgraduate studies for non-local students.
- Come visit us sometime!

Our Group at CUHK

Our team is advised by Prof. Hoi-To Wai, working in:

- graph signal processing and graph learning for network science, and
- stochastic and distributed algorithms for machine learning, signal processing, and control.
- Today I'll talk about our recent works on graph signal processing.

Motivation: Network (Graph) Data

- Graph signal processing (GSP): tool to analyze network data (graph signals).
- Data-generating processes affected by network structure: social, economic, biological, energy, transportation, etc.

Dealing with Network Data

 Statistics: Gaussian Markov random fields, graphical models
graph – statistical association of data

Machine learning: dimensionality reduction graph – representation of data

 SP: Graph Signal Processing graph – input/output association of data
⇒ generative, interpretable model

Low Pass GSP

SP cares about the frequency content in a (time domain) signal low frequency vs high frequency:

Similar notion carries over to graph signal processing (GSP) low pass graph signals vs non low pass graph signals:

Takehome: *Low pass* graph signals are prevalent + entail structure that enables (blind) graph topology learning.

Agenda

Background

Basics of GSP Models

A Quick Introduction

Low Pass Graph Signals

Graph Learning from Network Data Smoothness and Graph Learning Low-rank Model and Graph Feature Learning Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

Agenda

Background

Basics of GSP Models A Quick Introduction Low Pass Graph Signals

Graph Learning from Network Data Smoothness and Graph Learning Low-rank Model and Graph Feature L

Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

Graph Data (output) = Filter (system) + Excitation (input)

• Consider a *undirected graph* G = (V, E, A) with N nodes

• Graph signals = vectors defined on V, *i.e.*, $\mathbf{x} \in \mathbb{R}^{N}$.

[†]as in signal processing, filter encodes the **responses** of a system to excitation.

We model the network dynamics generating the graph data by: linear time invariant (LTI) filter = 'shift-invariant' + 'linear combination'.

Graph Filters

Network structure G is encoded in a matrix called graph shift operator

- Common choice is Laplacian matrix L = Diag(A1) A
- The EVD of **L** is $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$ with $\mathbf{0} = \lambda_1 < \cdots < \lambda_N$.

• Consider the graph filter as a matrix polynomial of *L*:

$$\mathcal{H}(\boldsymbol{L}) \mathrel{\mathop:}= \sum_{\ell=0}^{+\infty} h_\ell \boldsymbol{L}^\ell.$$

GSP Perspective: network data are filtered graph signals,

$$\underbrace{\mathbf{y}}_{output} = \underbrace{\mathcal{H}(\mathbf{L})}_{system} \underbrace{\mathbf{x}}_{input} = \sum_{\ell=0}^{+\infty} h_{\ell} \mathbf{L}^{\ell} \mathbf{x}.$$

► The signal/observation is **y** while **x** is viewed as the **excitation**.

What are low and high frequencies basis on graph?

▶ High frequency graph signal → *large variation* in adjacent entries:

$$S(\mathbf{x}) := \sum_{i,j} A_{ij} (x_i - x_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}$$

Intuition: if S(x) is small, the graph signal x is smooth. It holds S(u_i) = u_i[⊤]Lu_i = λ_i, as seen:

Frequency Analysis via Graph Fourier Transform

• Graph Fourier Transform gives the frequency components of a signal:

$$\tilde{\boldsymbol{y}} = \boldsymbol{U}^{\top} \boldsymbol{y} \longleftarrow \tilde{y}_i = \langle \boldsymbol{u}_i, \boldsymbol{y} \rangle.$$

The transfer/frequency response function of the graph filter is:

$$ilde{m{h}} = h(m{\lambda})$$
 where $ilde{h}_i = h(\lambda_i) := \sum_\ell h_\ell \lambda_i^\ell.$

<u>Thus:</u> $\mathcal{H}(\boldsymbol{L}) = \boldsymbol{U}h(\boldsymbol{\Lambda})\boldsymbol{U}^{\top}, \quad h(\boldsymbol{\Lambda}) = \mathrm{Diag}(h(\lambda_1), ..., h(\lambda_n)).$

We have the convolution theorem:

 $y = \mathcal{H}(L)x \iff \tilde{y} = \tilde{h} \odot \tilde{x} \quad \leftarrow \odot \text{ is element-wise product.}$

Graph filter can be classified as either low-pass¹, band-pass, or high-pass, depending on its graph frequency response².

 $^1\mathsf{E.g.},$ an ideal low-pass $\tilde{h}_1,...,\tilde{h}_K=1,\;\tilde{h}_{K+1},...,\tilde{h}_N=0.$

²[Isufi et al., 2024] E. Isufi, F. Gama, D. I Shuman, S. Segarra. Graph Filters for Signal Processing and Machine Learning on Graphs. TSP, 2022.

Low Pass Graph Filter (LPGF)

Def. For $1 \le K \le N - 1$, define $\eta_{K} := \frac{\max\{|h(\lambda_{K+1})|, \dots, |h(\lambda_{N})|\}}{\min\{|h(\lambda_{1})|, \dots, |h(\lambda_{K})|\}}.$ If the low-pass ratio satisfies $\eta_{K} < 1$, then $\mathcal{H}(\mathbf{L})$ is *K*-low-pass.

- ▶ Integer *K* characterizes the *bandwidth*, or the cut-off frequency.
- We say that y is K low pass signal provided that

 $y = \mathcal{H}(L)x$, where $\mathcal{H}(L)$ is *K*-low pass & *x* satisfies some mild cond..

Graph frequencies are non-uniformly distributed: λ_K ≪ λ_{K+1} tends to induce K-low-pass filters, e.g., stochastic block model (SBM).

Physical Models lead to Low Pass Signals

Social Network Opinions³

- V = individuals, E = friends.
- DeGroot model for opinions:

$$\mathbf{y}_{t+1} = (1 - \beta) \big(\mathbf{I} - \alpha \mathbf{L} \big) \mathbf{y}_t + \beta \mathbf{x}_t.$$

Observed steady state:

 $\mathbf{y}_{\infty} = \left(\mathbf{I} + \widetilde{\alpha}\mathbf{L}\right)^{-1}\mathbf{x} = \mathcal{H}(\mathbf{L})\mathbf{x},$

where $\widetilde{\alpha} = \beta (1 - \alpha) / \alpha > 0$.

Prices in Stock Market⁴

- V =financial inst., E = ties.
- Business performances evolve as:

 $\mathbf{y}_{t+1} = (1-\beta)\mathcal{H}(\mathbf{L})\mathbf{y}_t + \beta \mathbf{B}\mathbf{x},$

e.g., stock return.

Observed steady state:

$$\mathbf{y}_{\infty} = \left(\frac{1}{\beta}\mathbf{I} - \frac{\overline{\beta}}{\beta}\mathcal{H}(\mathbf{L})\right)^{-1}\mathbf{B}\mathbf{x} \\ = \widetilde{\mathcal{H}}(\mathbf{L})\mathbf{B}\mathbf{x}.$$

Fact⁵: Both $\mathcal{H}(\boldsymbol{L})$, $\tilde{\mathcal{H}}(\boldsymbol{L})$ are **low pass** graph filters.

low-pass graph signal processing and its applications. SPM, 2020.

³[DeGroot, 1974] M. H. DeGroot, Reaching a consensus. JASA, 1974.

⁴[Billio et al., 2012] M. Billio et al., Econometric measures of connectedness and systemic risk in the finance and insurance sectors, Journal of Economics Finance, 2012. ⁵[Ramakrishna et al., 2020] R. Ramakrishna, **H.-T.**, A. Scalgione. A user guide to

Agenda

Background

Basics of GSP Models A Quick Introduction Low Pass Graph Signal

Graph Learning from Network Data Smoothness and Graph Learning Low-rank Model and Graph Feature Learning Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

Graph Learning from Network Data

Goal: estimate *L* or some information about it.

• Working hypothesis: a number of graph signals $y^{(t)}$ are available as

Unknown Graph

Observed Low Pass Graph Signals

Observed graph signals: $\mathbf{y}^{(t)} \approx \mathcal{H}(\mathbf{L})\mathbf{x}^{(t)} = \mathcal{H}(\mathbf{L})\mathbf{B}\mathbf{z}^{(t)}, t = 0, ..., T - 1$

– $\mathcal{H}(\boldsymbol{L})$ is low pass, $\boldsymbol{z}^{(t)}$ is 0-mean, \boldsymbol{B} is pattern of excitation

• Graph learning relies on **two properties** of low pass signals:

- ► Smoothness → graph topology learning.
- ▶ Low-rankness → graph feature learning (e.g., community, centrality)

Smoothness and Graph Learning

Insight: For K-low-pass graph signals (η_K ≪ 1) with full-rank excitation satisfying B = I, we observe that

$$\mathbb{E}\big[\boldsymbol{y}_{\ell}^{\top}\boldsymbol{L}\boldsymbol{y}_{\ell}\big] \approx \sum_{i=1}^{K} \lambda_{i} |\boldsymbol{h}(\lambda_{i})|^{2} + \sigma^{2} \mathrm{Tr}(\boldsymbol{L}) \overset{\text{low pass filter}}{\approx} 0,$$

i.e., the low pass filtered graph signals are smooth w.r.t. $\boldsymbol{\textit{L}}.$

Idea: Fit a graph optimizing for smoothness (GL-SigRep)⁶:

$$\begin{array}{ll} \min_{\mathbf{z}_{\ell},\ell=1,\ldots,m,\widehat{\boldsymbol{L}}} & \frac{1}{m} \sum_{\ell=1}^{m} \left\{ \frac{1}{\sigma^{2}} \| \mathbf{z}_{\ell} - \mathbf{y}_{\ell} \|_{2}^{2} + \mathbf{z}_{\ell}^{\top} \widehat{\boldsymbol{L}} \mathbf{z}_{\ell} \right\} \leftarrow \text{note } \mathbf{z} \approx \mathbf{y} \\ \text{s.t.} & \operatorname{Tr}(\widehat{\boldsymbol{L}}) = N, \ \widehat{\boldsymbol{L}}_{ji} = \widehat{\boldsymbol{L}}_{ij} \leq 0, \ \forall \ i \neq j, \ \widehat{\boldsymbol{L}} \mathbf{1} = \mathbf{0}, \end{array}$$

⁶[Dong et al., 2016] X. Dong, D. Thanou, P. Frossard, P. Vandergheynst, "Learning Laplacian matrix in smooth graph signal representations." TSP, 2016.

Numerical Experiment: GL-SigRep

Topology learnt⁷ using GL-SigRep from the synthetic data generated through a low pass graph filter:

$$\mathbf{y}_\ell = \sqrt{\mathbf{L}}^{-1} \mathbf{x}_\ell, \quad \mathbf{x}_\ell \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

⁷Image credits: [Dong et al., 2016].

Low-rank-ness and Graph Feature Learning

Issue: with low-rank excitation ($\boldsymbol{B} \in \mathbb{R}^{N \times R}$ with R < N) \longrightarrow graph learning = difficult \therefore data is nearly rank deficient...

• Insight: Suppose $\mathcal{H}(\mathbf{L})$ is (η, K) low pass, then

 $\boldsymbol{C}_{\boldsymbol{y}} = \mathbb{E}[\boldsymbol{y}\boldsymbol{y}^{\top}] = \mathcal{H}(\boldsymbol{L})\boldsymbol{U}\boldsymbol{C}_{\boldsymbol{x}}\boldsymbol{U}^{\top}\mathcal{H}(\boldsymbol{L})^{\top} \approx \boldsymbol{U}_{\boldsymbol{K}}\boldsymbol{C}_{\boldsymbol{\tilde{x}}}\boldsymbol{U}_{\boldsymbol{K}}^{\top},$

where $C_x = BB^{\top}$, $U_K = (u_1, ..., u_K) \in \mathbb{R}^{N \times K}$. \Rightarrow Thus C_y is also low rank!

- Approximation holds if $\eta \ll 1 \Rightarrow$ low rank $\mathcal{H}(\cdot)$, rank $(\mathcal{H}(L)) \approx K \ll N$ and range space $\approx U_K$.
- Idea: spectral method to extract principal components in U_K from C_y.

 \implies Can (still) learn **communities** and **centrality** of the graph.

Blind community detection (Blind CD)

<u>Idea</u>: spectral clustering applied on empirical covariance $\widehat{C}_y \approx C_y$:

(i) find the top- $k \ \widehat{\boldsymbol{U}}_{K} \in \mathbb{R}^{N \times K}$ of $\widehat{\boldsymbol{C}}_{y} = \frac{1}{m} \sum_{\ell=1}^{m} \boldsymbol{y}_{\ell} \boldsymbol{y}_{\ell}^{\top}$; (ii) apply *k*-means on the rows of $\widehat{\boldsymbol{U}}_{K}$.

Theorem: Denote the detected clusters as $\widehat{\mathcal{N}}_1, \ldots, \widehat{\mathcal{N}}_K$, then⁸

$$\underbrace{\mathbb{K}(\widehat{\mathcal{N}}_1,\ldots,\widehat{\mathcal{N}}_k;\boldsymbol{U}_K)}_{\text{K-means obj. based on }\boldsymbol{U}_K} - \underbrace{\mathbb{K}^\star}_{\text{Optimal }K\text{-means obj.}} = \mathcal{O}(\eta_k + m^{-1/2}).$$

 $^{\dagger} \rightarrow$ performance of *spectral clustering (with known topology)* if $\eta_k \rightarrow 0$.

Learning of high-level structure is robust to low-rank excitation.

⁸[Wai et al., 2019] H.-T., S. Segarra, A. Ozdaglar, A. Scaglione, A. Jadbabaie, "Blind community detection from low-rank excitations of a graph filter," TSP, 2019.

Numerical Experiment: Blind CD (+Boosting)

(a) As $R = \operatorname{rank}(\mathbf{C}_x)$ increases, Blind CD approaches the performance of spectral clustering on the true GSO.

Blind Centrality Learning

Eigen-centrality = TopEV(A) is revealed by TopEV(C_y) for 1-low pass signals => a simple PCA procedure suffices:

Theorem⁹: let v_1 be the true eig. centrality,

$$\|\hat{\mathbf{v}}_1 - \mathbf{u}_1\|_2 = \mathcal{O}(\eta_1 + m^{-1/2}).$$

⁹[He and Wai, 2022] Y. He, H.-T., "Detecting central nodes from low-rank excited graph signals via structured factor analysis," TSP, $2022 \leftarrow$ note GSO = **A** in this case.

Numerical Experiment: Blind Centrality Learning

- Graph filter H(·) is (left) 'weak' low pass, i.e., η ≈ 1; (right) 'strong' low pass, i.e., η ≪ 1.
- Proposed Algorithm 1 with NMF outperforms SOTA in the considered setting for 'weak' low pass; and similarly as PCA for 'strong' low pass.

Numerical Experiment: Blind Centrality Learning

(left) 'Strong' low pass, (right) 'Weak' low pass

Numerical Experiment: Blind Centrality Learning

() Otrali D () it

	(a) STOCK Dataset													(b) Senate Dataset										
Method		То	p-10 Est	Method	Top-10 Estimated Central States (sorted left-to-right)																			
Algorithm 1	ALL	ACN	HON	AXP	IBM	DIS	ORCL	MMM	BRK.B	COST	Algorithm 1	MI	MT	KS	RI	TN	MN	NV	ME	MD	IN			
	0.43	0.56	0.51	0.72	0.50	0.36	0.70	0.33	0.52	0.64		0.79	0.66	0.74	0.67	0.68	0.74	0.43	0.67	0.6	0.62			
			Ave	Average Correlation Score: 0.66 ± 0.099																				
PCA (11)	NVDA	NFLX	AMZN	ADBE		CAT	MA	GOOG	BA	GOOGL	PCA (11)	CA	DE	CO	IL	ND	WV	IA	VA	WY	MA			
	0.56	0.60	0.68	0.63	0.65	0.27	0.67	0.63	0.28	0.63		0.55	0.46	0.54	0.63	0.72	0.52	0.51	0.56	0.59	0.58			
			Average Correlation Score: 0.57 ± 0.072																					
GL-SigRep	GOOGL	GOOG	LLY	USB	EMR	DUK	ORCL	GD	VZ	V	GL-SigRep	CA	DE	WV	CO	IL	VA	ND	IA	WY	AZ			
[13]	0.63	0.63	0.17	0.43	0.59	0.11	0.70	0.53	0.27	0.71	[13]	0.55	0.46	0.52	0.54	0.63	0.56	0.72	0.51	0.59	0.31			
		Average Correlation Score: 0.54 ± 0.108																						
KNN	ACN	HON	ALL	BRK.B	IBM	AXP	EMR	MMM	CSCO	XOM	KNN	ND	CA	IL	WV	DE	VA	AZ	CO	WY	IA			
	0.56	0.51	0.43	0.52	0.50	0.72	0.59	0.33	0.63	0.55		0.72	0.55	0.63	0.52	0.46	0.56	0.31	0.54	0.59	0.51			
	Average Correlation Score: 0.54 ± 0.108																							
SpecTemp	ACN	ORCL	PG	LLY	SUBX	PYPL	MDLZ	FB	PFE	MRK	SpecTemp	AL	ND	WV	CA	DE	IL	MO	MA	VA	SD			
[14]	0.56	0.70	0.36	0.17	0.58	0.65	0.41	0.61	0.14	0.20	[14]	0.61	0.72	0.52	0.55	0.46	0.63	0.57	0.58	0.56	0.56			
			Ave	rage Corr	elation :	Score: 0	0.44 ± 0	.211			Average Correlation Score: 0.58 ± 0.069													
Kalofolias	ACN	HON	BRK.B	ALL	AXP	IBM	XOM	KO	USB	COST	Kalofolias	AL	AK	AZ	AR	WV	VA	CA	CO	CT	DE			
[44]	0.56	0.51	0.52	0.43	0.72	0.50	0.55	0.32	0.43	0.64	[44]	0.61	0.63	0.31	0.47	0.52	0.56	0.55	0.54	0.45	0.46			
	Average Correlation Score: 0.51 ± 0.093																							
Inforr	nation Tec	hnology/	Commu	nication !	Services.	/ Industr	rials/ Fina	incials/ot	ther secto	ors.	Republican/ Democrat/ Mixed.													

(1) Ormate D ()

⁴⁺The number below each stock/state shows its normalized correlation score with the S&P100 index and number of 'Yay's in the voting result [cf. (36)]. The average correlation scores are taken over the set of central nodes found and the number after '±' is the standard deviation.

(a) Detected central nodes with performance measured on correlation of nodes with (left) S&P500 index, (right) voting outcomes.

Leveraging Low-passness with Partial Observation

In many settings, we do not observe complete graph signals on every nodes, e.g., large social network, power network, etc.

Hidden nodes remain influential and affect the observations:

$$\mathbf{y} = \mathcal{H}(\mathbf{L})\mathbf{x}$$
 with $\mathbf{y} = \begin{bmatrix} \mathbf{y}_{obs} \\ \mathbf{y}_{hid} \end{bmatrix}$, $\mathbf{L} = \begin{bmatrix} \mathbf{L}_{o,o} & \mathbf{L}_{o,h} \\ \mathbf{L}_{h,o} & \mathbf{L}_{h,h} \end{bmatrix}$

Learning with Partial Observation

Goal: infer about **the subgraph of observable nodes**, **L**_{0,0}:

$$\boldsymbol{y} = \mathcal{H}(\boldsymbol{L})\boldsymbol{x} = \begin{bmatrix} \boldsymbol{y}_{\text{obs}} \\ \boldsymbol{y}_{\text{hid}} \end{bmatrix}, \ \boldsymbol{C}_{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{y}}^{\circ} & \boldsymbol{C}_{\boldsymbol{y}}^{\circ,\text{h}} \\ \boldsymbol{C}_{\boldsymbol{y}}^{\text{h,o}} & \boldsymbol{C}_{\boldsymbol{y}}^{\text{h}} \end{bmatrix}, \ \boldsymbol{L} = \begin{bmatrix} \boldsymbol{L}_{\text{o,o}} & \boldsymbol{L}_{\text{o,h}} \\ \boldsymbol{L}_{\text{h,o}} & \boldsymbol{L}_{\text{h,h}} \end{bmatrix}$$

Leveraging Lowrank-ness: provided $\mathcal{H}(L)$ is (η, K) low pass,

$$C_y^o = E_o C_y E_o^\top \approx (E_o U_K) C_{\tilde{x}} (E_o U_K)^\top$$

where E_o is row-selection matrix for V_{obs} . \uparrow can estimate $E_o U_K \approx U_{K,o}$

- **Key observation**: low-rankness of $\mathcal{H}(L)$ supersedes partial obs.
- Straightforward extension for graph feature learning: partial community detection¹⁰, partial centrality inference¹¹

¹⁰[Wai et al., 2022] H.-T., Y. Eldar, A. Ozdaglar, A. Scaglione, "Community Inference From Partially Observed Graph Signals: Algorithms and Analysis", TSP, 2022.
¹¹[He and Wai, 2023] Y. He, H.-T., Central nodes detection from partially observed graph signals, in ICASSP 2023.

Agenda

Background

- Basics of GSP Models
 - A Quick Introduction
 - Low Pass Graph Signals
- Graph Learning from Network Data
 - Smoothness and Graph Learning
 - Low-rank Model and Graph Feature Learning
 - Learning with Partial Observation

Beyond Inference Problems & Wrapping Up

Detecting Low-pass Signals

Question: How do we know if a set of graph signals are low pass?

• Topology inferred from non low pass signals can be **deceptive**.

(a) Ground truth. (b) Topology learnt by GL-SigRep on non-low-pass signals.

- Challenges: graph topology **A** and filter $\mathcal{H}(\mathbf{A})$ are unknown.
- Warning: an ill posed problem graph signals is smooth on one graph, but non-smooth on another.

Detecting Low-pass Signals

- Assume: no. of dense clusters, K, in the graph is known a-priori. $\Rightarrow \lambda_1, \ldots, \lambda_K \approx 0 \Rightarrow$ if the filter is low pass, it will be K low pass.
- Observation: graph signals from K low pass filter exhibit particular spectral signature. E.g., SBM graph with K = 3 clusters,

Idea: Measure *clusterability* of principal eigenvectors.

Application: Robustifying Graph Learning

What if graph signals are corrupted with non-low-pass observations? \implies screen them out by a blind detector and apply [Dong et al., 2016].

- (a) Ground truth graph learnt from clean data.
- (b) Graph learnt from **corrupted** data (mixed w/ high-pass signals).
- (c) Graph learnt after the **pre-screening** procedure.
 - Other applications: blind detection of network dynamics, blind anomaly detection, etc.¹²

¹²[Zhang et al., 2024] C. Zhang, Y. He, **H.-T.**. Detecting Low Pass Graph Signals via Spectral Pattern: Sampling Complexity and Applications. TSP, 2024.

Detecting Low-pass Signals w/ Partial Observations

$$\boldsymbol{y} = \mathcal{H}(\boldsymbol{L})\boldsymbol{x} = \begin{bmatrix} \boldsymbol{y}_{obs} \\ \boldsymbol{y}_{hid} \end{bmatrix}, \ \boldsymbol{C}_{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{y}}^{o} & \boldsymbol{C}_{\boldsymbol{y}}^{o,h} \\ \boldsymbol{C}_{\boldsymbol{y}}^{h,o} & \boldsymbol{C}_{\boldsymbol{y}}^{h} \end{bmatrix}, \ \boldsymbol{L} = \begin{bmatrix} \begin{bmatrix} \boldsymbol{L}_{o,o} \\ \boldsymbol{L}_{o,o} \end{bmatrix} & \boldsymbol{L}_{o,h} \\ \boldsymbol{L}_{h,o} & \boldsymbol{L}_{h,h} \end{bmatrix}$$

Observation: the spectral signature is preserved even in partially observed low-pass graph signals, E.g., SBM graph with K = 3 clusters,

Measuring *clusterability* of principal eigenvectors **still works**.

Application: Robustifying Partial Blind CD

What if partial graph signals are corrupted with non-low-pass observations? \implies screen them out by a blind detector and apply [Wai et al., 2022].

Fig. 3. Comparing blind community detection performance vs. (left) no. of observed nodes n ($p_s = 1$), (right) corrupted portion of signals p_s (n = 50).

Other applications: blind detection of network dynamics, blind anomaly detection, etc. with only partial observations¹³

¹³[Nguyen and Wai, 2024] H.-S., H.-T., "On Detecting Low-pass Graph Signals under Partial Observations", in SAM, 2024.

Stability of Graph Filter with Edge Rewiring

- Graph filter is an important building block of Graph Convolutional Neural Network (GCN) → trained on H(L), but applied on H(L̂).
- Stability¹⁴ is related to *transferability* of GCNs. Existing results require small no. of edge rewires.

Frequency-domain bound: If $\mathcal{H}(\mathbf{L})$ is low pass, then

$$\|\mathcal{H}(\mathbf{L}) - \mathcal{H}(\hat{\mathbf{L}})\| = \mathcal{O}(\eta + \|\mathbf{U}_k - \hat{\mathbf{U}}_k\| + \|\mathbf{\Lambda}_k - \hat{\mathbf{\Lambda}}_k\|),$$

where $U_k - \hat{U}_k$, $\Lambda_k - \hat{\Lambda}_k$ are perturbations of top eigenvectors/values.

• Residuals \rightarrow 0 for edge rewiring on SBMs perturbations¹⁵.

¹⁴[Gama et al., 2020] F. Gama, J. Bruna, A. Ribeiro. Stability properties of graph neural networks. TSP, 2020.

¹⁵[Nguyen et al., 2022] H.-S., Y. He, H.-T., "On the stability of low pass graph filter with a large number of edge rewires," in ICASSP, 2022.

Stability of Graph Filter with Edge Rewiring

Frequency-domain bound: If $\mathcal{H}(\mathbf{L})$ is low pass, then

$$\|\mathcal{H}(\mathcal{L}) - \mathcal{H}(\hat{\mathcal{L}})\| = \mathcal{O}(\eta + \|\mathcal{U}_k - \hat{\mathcal{U}}_k\| + \|\Lambda_k - \hat{\Lambda}_k\|),$$

where $U_k - \hat{U}_k$, $\Lambda_k - \hat{\Lambda}_k$ are perturbations of top eigenvectors/values.

Low pass filters are insensitive to no. of rewiring vs. high pass filters.

Wrapping Up

- Takehome Point: Low pass graph signals are prevalent + entail structure that enables (blind) graph topology learning.
 - ► Smoothness → graph topology learning.
 - ▶ Low-rankness → topology feature learning (centrality, community).
 - also for learning from partial observation, ...
- Related problems: how to detect low pass signals, application to machine learning on graph, ...

Thank you!

Questions & comments are welcomed.

An (old) tutorial can be found here: arxiv.org/abs/2008.01305

Raksha Ramakrishna, Hoi-To Wai, and Anna Scaglione

A User Guide to Low-Pass Graph Signal Processing and Its Applications

Tools and applications

The notion of graph filters can be used to define generative models for graph data. In fact, the data obtained from many examples of network dynamics may be viewed as the output or graph filter. With this interpretation, classical signal processing tools, such as frequency analysis, have been successfully upplied with analogous interpretation to graph data, generating new insights for data science. What follows is a user guide on a specific class of graph data, where the generating graph filters are low prace, i.e., the first attenuates contents in the higher with the state of the science of the

References

[Billio et al., 2012] Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. *Journal of financial economics*, 104(3):535–559.

[DeGroot, 1974] DeGroot, M. H. (1974).

Reaching a consensus. Journal of the American Statistical association, 69(345):118–121.

[Dong et al., 2016] Dong, X., Thanou, D., Frossard, P., and Vandergheynst, P. (2016). Learning Laplacian matrix in smooth graph signal representations. *IEEE Trans. Signal Process.*, 64(23):6160–6173.

[Gama et al., 2020] Gama, F., Bruna, J., and Ribeiro, A. (2020). Stability properties of graph neural networks. IEEE Transactions on Signal Processing, 68:5680–5695.

[He and Wai, 2022] He, Y. and Wai, H.-T. (2022).

Detecting central nodes from low-rank excited graph signals via structured factor analysis. IEEE Transactions on Signal Processing.

[He and Wai, 2023] He, Y. and Wai, H.-T. (2023). Central nodes detection from partially observed graph signals. In *ICASSP*. IEEE.

[Isufi et al., 2024] Isufi, E., Gama, F., Shuman, D. I., and Segarra, S. (2024). Graph filters for signal processing and machine learning on graphs. *IEEE Transactions on Signal Processing*, pages 1–32. [Nguyen et al., 2022] Nguyen, H.-S., He, Y., and Wai, H.-T. (2022). On the stability of low pass graph filter with a large number of edge rewires. In *IEEE ICASSP*.

[Nguyen and Wai, 2024] Nguyen, H.-S. and Wai, H.-T. (2024).
On detecting low-pass graph signals under partial observations.
In 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 1–5.

[Ramakrishna et al., 2020] Ramakrishna, R., Wai, H.-T., and Scaglione, A. (2020). A user guide to low-pass graph signal processing and its applications. *IEEE Signal Processing Magazine*.

[Wai et al., 2022] Wai, H.-T., Eldar, Y. C., Ozdaglar, A. E., and Scaglione, A. (2022). Community inference from partially observed graph signals: Algorithms and analysis. *IEEE Transactions on Signal Processing*, 70:2136–2151.

[Wai et al., 2019] Wai, H.-T., Segarra, S., Ozdaglar, A. E., Scaglione, A., and Jadbabaie, A. (2019). Blind community detection from low-rank excitations of a graph filter. *IEEE Transactions on signal processing*, 68:436–451.

[Zhang et al., 2024] Zhang, C., He, Y., and Wai, H.-T. (2024). Detecting low pass graph signals via spectral pattern: Sampling complexity and applications. *IEEE Transactions on Signal Processing*, 72:3347–3362.