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Motivation

• Graph topology learning via smooth signals is prevalent in GSP [1, 2].
• Modern networks are large – only a portion of nodes are observed.
⇒ Can we still learn partial graph associated with obs. nodes?
• Existing works considered sophisticated methods for graph topology

learning while accounting for the influence of hidden nodes [4, 5],
• How? Unknown influence signals are low rank if the number of hidden

nodes is significantly lower than the number of observed nodes.

TL;DR

Q: Do we need a new graph topology learning criterion in
partial observation settings?
A: No, if the graph signals are sufficiently smooth.

Preliminaries: Graph Topology Learning

Graph G = (V , E) is weighted, undirected, connected, has N nodes, with
adjacency matrix A, degree matrix D, and Laplacian matrix

L = Diag(A1) − A = VΛV⊤ ∈ LN ,

where LN is the set of N -node Laplacian, i.e.
LN := {L̂ : Tr(L̂) = N, L̂1 = 0, L̂ = L̂⊤},

Λ = Diag(λ1, ..., λN) are eigenvalues and V = [v1, ..., vN ] are sorted by
ascending eigenvalues 0 = λ1 ≤ ... ≤ λN .

Learning Criterion (full obs.): Assume graph signals y1, ..., yM ∈ RN

are smooth (i.e., y⊤
mLym ≈ 0), [1] and [2] propose to the problem:

min
L̂

Jf(L̂) :=
∑

m

y⊤
mL̂ym s.t. L̂ ∈ LN (GL-Full)

Let L⋆ ∈ arg minL̂∈LN
Jf(L̂) be an optimal solution to GL-Full.

Learning with Partial Observations

Partially Observed Signals: Among N graph signals, only n signals on
a certain set of n nodes are observed, i.e.,

yo,m = [In×n 0n×(N−n)]ym =: Eoym,

where Eo ∈ Rn×N takes a subset of n nodes from V .
Learning Criterion (partial obs.): Adapting (GL-Full) yields the fol-
lowing hidden-node agnostic graph learning criterion (GL-Partial):

min
L̂p

Jp(L̂p) :=
∑

m

y⊤
o,mL̂pyo,m s.t. L̂p ∈ Ln (GL-Partial)

Let L⋆
p ∈ arg minL̂p

Jp(L̂p) be an optimal solution to GL-Partial.

Main Result

What is the relationship between L⋆ and L⋆
p?

Let us study

L̂ := N

n
E⊤

o L⋆
pEo, L̃p := EoL⋆E⊤

o + Diag(L⋆
oh1)

where L̂ is an N -node graph with the only connected part being (scaled) L⋆
p,

EoL⋆E⊤
o =: L⋆

oo is the observed part of L⋆, and L⋆
oh is observed-hidden part.

Assumptions are
• A1: L⋆

oh1 ≤ ϵ1 for small ϵ, and
• A2: Tr(L⋆

oo) − 1⊤L⋆
oh1 ≥ cn for some c > 0, and

• A3: ym ∈ span(VK), ∀m = 1, ..., M .
⇒ A3 is plausible in low-pass graph signals with bandwidth K [3].

Main Theorem

Consider a random partial observation set S = {s(1), s(2), ..., s(n)}, which
is sampled with replacements from V . Then, ∀δ ∈ (0, 1), ∃t ∈ (0, 1) such
that with probability at least 1 − δ,

Jp(L⋆
p) ≤ Jp(L̃p) ≤

[
1 + t

c

σmax(L)
σ+

min(L)

]
Jp(L⋆

p) + O
(ϵ

c

)
and

Jf(L⋆) ≤ Jf(L̂) ≤
[

1 + t

c

σmax(L)
σ+

min(L)

]
Jf(L⋆) − O

(
Nϵ

cn

)
,

provided that the number of observations satisfies
n

N
≥ 3

t2 max
1≤i≤N

∥V⊤
Kei∥2

2 ln
(

2K

δ

)
.

Proof sketch: Establish a high-probability one-sided RIP property that

yE⊤
o EoLE⊤

o Eoy ≤ (1 + t) n

N

σmax(L)
σ+

min(L)
y⊤Ly, ∀y ∈ span(VK).

Interpretations:
• If 1+t

c
σmax(L)
σ+

min(L) = Θ(1), then the above theorem suggests that L⋆
p corresponds

to a row/column sampled version of L⋆. In this case, such condition can be
satisfied for non-modularized graphs.

• Result is insensitive to the no. of hidden nodes (N − n ≫ 1).

Synthetic Experiment

Erdos-Renyi graph with connectivity p = 0.3, N = 64 nodes, and M = 20
low-pass signals ym = (I + αL)−1xm (α > 0 controls low-pass-ness).

α ↑ ⇒ more low-pass ⇒ A3 more likely to hold
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Fig. 1:Median F-score of observed L⋆
oo and learned L⋆

p vs. no. of hidden nodes n

Two Takeaways

• Even when N − n ≫ 1, graph learned from (GL-Partial) ≈ graph
learned from (GL-Full).

• More low-pass the graph signals ⇒ Good F-score is achieved with a
smaller number of observations n.
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