Motivation

Unknown Graph
with Hidden —
Nodes x

e Graph topology learning via smooth signals is prevalent in GSP [1, 2|.

e Modern networks are large — only a portion of nodes are observed.
= Can we still learn partial graph associated with obs. nodes?

e Existing works considered sophisticated methods for graph topology
learning while accounting for the influence of hidden nodes |4, 5],

e How”? Unknown influence signals are low rank if the number of hidden
nodes is stgnificantly lower than the number of observed nodes.

QQ: Do we need a new graph topology learning criterion in

partial observation settings’
A: No, if the graph signals are sufficiently smooth.

Preliminaries: Graph Topology Learning

Graph G = (V, ) is weighted, undirected, connected, has N nodes, with
adjacency matrix A, degree matrix D, and Laplacian matrix

L = Diag(Al) — A = VAV' € Ly,
where Ly is the set of N-node Laplacian, i.e.
Ly ={L:Tr(L)=N,L1=0,L=L"},
A = Diag(Aq, ..., A\n) are eigenvalues and V = |vy,...,vy]| are sorted by
ascending eigenvalues 0 = A\ < ... < Ay

Learning Criterion (full obs.): Assume graph signals y1,...,yy € RY
are smooth (i.e., y, Ly,, ~ 0), [1] and [2] propose to the problem:

min J¢(L) := "Ly, st.LeL
i 7(L) ;y y N

(GL-Full)

Let L* € argming . J (L) be an optimal solution to GL-Full.
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Learning with Partial Observations

Partially Observed Signals: Among N graph signals, only n signals on
a certain set of n nodes are observed, i.e.,

Yom = [Inxn Onx(N—n)]Ym =: Eoym,
where E, € R takes a subset of n nodes from V.

Learning Criterion (partial obs.): Adapting (GL-Full) yields the fol-
lowing hidden-node agnostic graph learning criterion (GL-Partial):

min .J,(L,) = Z ylmﬁpyojm st. L, € L, (GL-Partial)

p

Let L € arg ming, J,(L,) be an optimal solution to GL-Partial.

Main Result

What is the relationship between L* and L7?
Let us study

AN ~~

L= EEJL]’;EO, L, = E,L’E_ + Diag(L*,1)

where L is an N-node graph with the only connected part being (scaled) L7,
E,L*E) =: L* is the observed part of L*, and L?, is observed-hidden part.
Assumptions are

e Al: L1 < el for small €, and
e A2: Tr(L;,) — 1'L*1 > cn for some ¢ > 0, and
°A3: y,, €span(Vg), Vm=1,.... M.

= A3 is plausible in low-pass graph signals with bandwidth K |3].

Main Theorem

Consider a random partial observation set S = {s(1), s(2), ..., s(n)}, which
is sampled with replacements from V. Then, Vd € (0,1), 3t € (0, 1) such
that with probability at least 1 — 0,
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provided that the number of observations satisfies
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Proof sketch: Establish a high-probability one-sided RIP property that
1 Omax (L)
No'. (L)

min

vE, E,.LE, Ey < (1 +1t) y 'Ly, Vy € span(Vg).

Robustness of Graph Topology Learning with Smooth Signals under Partial Observations

Interpretations:

o If HWTX(%) = O(1), then the above theorem suggests that L corresponds

min

to a row/column sampled version of L*. In this case, such condition can be

satisfied for non-modularized graphs.

e Result is insensitive to the no. of hidden nodes (N —n > 1).

Synthetic Experiment

Erdos-Renyi graph with connectivity p = 0.3, N = 64 nodes, and M = 20
low-pass signals y,, = (I + aL) !x,, (a > 0 controls low-pass-ness).

a T = more low-pass = A3 more likely to hold
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Fig. 1:Median F-score of observed L7, and learned L vs. no. of hidden nodes n

Two Takeaways

o Even when NV — n > 1, graph learned from (GL-Partial) & graph
learned from (GL-Full).

e More low-pass the graph signals = Good F-score is achieved with a
smaller number of observations n.
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