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Abstract—Recently, many sophisticated algorithms have been
proposed for graph topology learning from partial observations.
Most of them have relied on advanced structures such as low-
rankness and sparsity, but would otherwise require the number of
unobserved nodes to be significantly smaller than the graph size.
The aim of this ongoing work is to demonstrate theoretically that
simple graph topology learning methods are implicitly robust to
partial observations of low pass filtered graph signals. We achieve
this result through extending the RIP property for the Dirichlet
energy function. We show that smoothness-based graph learning
formulation on partial observations is able to learn the ground
truth graph topology corresponding to the observed nodes.

I. INTRODUCTION

This ongoing work studies the problem of graph topology
learning from a set of graph signal observations. As a crucial
first step for graph data analysis, etc., graph topology learning
has received attention from signal processing, control, and
machine learning communities [1]–[4]. A typical setup in the
literature is to consider full observation data where the graph
signals on each node are recorded (simultaneously). However,
for graphs with large number of nodes or even open systems,
obtaining full observation of graph signals can be challenging.
For social networks, this requires each individual to report
their states within a limited time interval; for biological or
physical networks, this requires estimating the states of each
components. As such, we are often restricted to accessing
partially observed graph signals, where the states of a subset
of nodes become unobservable. These unobserved nodes are
hidden from us whose existence may not even be known.

Although the states of hidden nodes are not observed,
these nodes may still influence the observed nodes in the
network system. As pioneered by [5], recent works have
considered sophisticated methods for graph topology learning
while accounting for the influence of these hidden nodes.
Importantly, [5] showed that the unknown influence signals
are low rank if the number of hidden nodes is lower than
the number of observed nodes. This inspired recent works
to propose graph topology learning methods that are aware
of the hidden nodes for Gaussian graphical model inference
[5], stationary graph signals via spectral template [6], smooth
graph signals [6], etc. The major drawback of these works
is that they generally require the number of hidden nodes
to be significantly lower than the number of observed nodes.
The new graph learning formulations also require additional
complexity with hyperparameter tuning.

Our aim is to explore an alternative strategy to graph
topology learning with partial observation which is agnostic to
the existence of hidden nodes. We study a ‘naive’ approach of
directly applying graph topology learning methods for full ob-
servations such as [1], [2] on partially observed graph signals.
In particular, we concentrate on analyzing the robustness of the
smoothness based graph learning objective, i.e., the Dirichlet
energy of graph signals, under partial observations. We will
present the following findings:
• If the graph signals are generated from a low pass filtering

process, then such a naive approach is guaranteed to learn
a partial graph topology similar to one taken from learning
with full observation.

• We show the above theoretical result through utilizing a
new perspective on the restricted isometry property (RIP)
for quadratic forms of the sampled graph Laplacian.

In other words, for low pass graph signals, it suffices to
directly apply [1] to infer the partial graph topologies, instead
of relying on further sophistication in [5], [6].

II. MAIN RESULT

Setup & Notations. Consider an N -node weighted undi-
rected connected simple graph G = (V, E), where V =
{1, . . . , N} and E ⊆ V×V such that the graph is also endowed
with a weighted adjacency matrix A ∈ RN×N and a Laplacian
matrix L = Diag(A1) − A. Let dmax denote the maximum
degree in G. The Laplacian matrix admits the eigendecomposi-
tion L = VΛV⊤ such that Λ = Diag(λ1, . . . , λN ) has eigen-
values sorted in ascending order 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

This work focuses on analyzing the graph topology learning
using a strategy similar to [1], [2]. In this framework, we
assume that the graph signals y1, . . . ,yM are smooth w.r.t. L
such that y⊤

mLym ≈ 0 for any m = 1, . . . ,M . It inspires the
graph learning problem:

minL̂ Jf (L̂) :=
∑M

m=1 y
⊤
mL̂ym s.t. L̂ ∈ LN , (1)

where

LN := {L̂ ∈ RN×N : Tr(L̂) = N, L̂1 = 0, L̂ = L̂⊤}.

We denote L⋆ as an optimal solution to (1).
However, the above requires full observations of graph

signals. To distinguish the above from the partial observation



case of interest, we let yo,1, . . . ,yo,M be the set of partially
observed graph signals such that

yo,m = Eoym, with Eo ∈ Rn×N

and Eo takes a subset of n nodes from V . We consider the
following hidden-node agnostic graph learning problem:

minL̂p
Jp(L̂p) :=

∑M
m=1 y

⊤
o,mL̂pyo,m s.t. L̂ ∈ Ln. (2)

Notice that the above problem is identical to (1) except for
the use of partial graph signals and L̂p is an estimate for the
Laplacian matrix corresponding to a subgraph of G with nodes
selected in Eo. We denote L⋆

p as an optimal solution to (2).

Analysis. The goal of this work is to analyze the relation-
ship between the optimal solutions to (1), (2). Particularly, we
wish to show that L⋆

p corresponds to a column/row sampled
version of L⋆. To this end, we define:

L̂ :=
N

n
E⊤

o L
⋆
pEo, L̃p := EoL

⋆E⊤
o︸ ︷︷ ︸

=:L⋆
oo

+Diag(L⋆
oh1)

where L̂ ∈ LN , L̃p ∈ Ln and we defined L⋆
oh to be the

submatrix of L⋆ corresponding to edges between observable
and hidden nodes. We further assume L⋆

oh1 ≤ ϵ1 for some
small ϵ, and Tr(L⋆

oo)− 1⊤L⋆
oh1 ≥ cn for constant c > 0.

As an illustration, our analysis concentrates on an ideal
scenario where the (fully observed) graph signals ym lie in
a K-dimensional subspace, where K ≪ n ≤ N , with

ym ∈ span(VK), m = 1, . . . ,M, (3)

such that VK that consists of K eigenvectors of L⋆ with the
K smallest eigenvalues. We note that the scenario is satisfied
when solving (1) learns the ground truth graph topology. This
is a plausible scenario for graph signals that are resulted from
a low pass graph filtering process with cutoff bandwidth K
[7]. Our main result under (3) is summarized as follows:

Theorem 1. Consider a random partial observation set S =
{s(1), s(2), ..., s(n)}, which is sampled independently with
replacements from the node index set {1, ..., N}. Then, with
any δ ∈ (0, 1), there is an t ∈ (0, 1) such that with probability
at least 1−δ, provided that the number of observations satisfies

n

N
≥ 3

t2
max

1≤i≤N
∥V⊤

Kei∥22 ln
Å
2K

δ

ã
,

the following inequalities hold

Jp(L
⋆
p) ≤ Jp(L̃p) ≤

1 + t

c

σmax(L)

σ+
min(L)

Jp(L
⋆
p) +O

( ϵ
c

)
and

Jf(L
⋆) ≤ Jf(L̂) ≤

1 + t

c

σmax(L)

σ+
min(L)

Jf(L
⋆)−O

Å
Nϵ

cn

ã
.

We observe that if 1+t
c

σmax(L)

σ+
min(L)

= Θ(1), then the above the-
orem suggests that L⋆

p corresponds to a row/column sampled
version of L⋆. In this case, such condition can be satisfied for
non-modularized graphs. Importantly, our result is insensitive
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Fig. 1. F-score between L⋆
p learned from partial signals and the observed

part of L⋆, varying with number of observed nodes n

to the number of hidden nodes, suggesting that the conclusion
continues to hold even when N − n ≫ 1. To give insights,
our theorem is achieved by establishing the following one-
sided RIP property, i.e., with high probability and for any
y ∈ span(VK),

yE⊤
o EoLE

⊤
o Eoy ≤ (1 + t)

n

N

σmax(L)

σ+
min(L)

y⊤Ly. (4)

A proof sketch can be found in the appendix.

Preliminary Numerical Results. Lastly, we validate our
theoretical findings by considering a numerical toy example
with synthetically generated graph signals data. We let G be
an Erdos-Renyi graph with connectivity p = 0.3, N = 64
nodes, and ym be a low-pass graph signals generated as ym =
(I+αL)−1xm, where α > 0 controls the low pass-ness of the
graph filter; the higher α is, the more low pass the resulting
signals are. Increasing α implies a higher chance for (3) to
be satisfied. We consider the graph learning problem M = 20
samples. Fig. 1 shows the median F-scores of L⋆

p compared
with the corresponding observed part of L⋆ against n. Observe
that even when n ≪ N , the graph learnt from (2) remains
accurate compared to the benchmark with (1), thus validating
Theorem 1. We can also see that the more low-pass the graph
signals are, a good F-score is achieved with a smaller number
of observations n.

III. CONCLUSION & FUTURE WORK

We have presented the preliminary theoretical result that
demonstrates the robustness of graph topology learning based
on the smoothness criterion (2) against partial observation. We
anticipate that the results can be extended to other tasks related
to graph topology learning such as community detection
[8], [9] and the bound can be further tightened. The above
extensions are part of the ongoing work which we expect to
deliver during the workshop.
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APPENDIX: OMITTED PROOFS

Lemma 1. Consider a random partial observation S =
{s(1), s(2), ..., s(n)}, which is sampled independently with
replacements from the node indices {1, ..., N}. The set S
is encoded in a matrix Eo ∈ {0, 1}n×N that gives Loo =
EoLE

⊤
o /∈ Ln and yo = Eoy ∈ Rn. For any δ ∈ (0, 1), there

exists a t ∈ (0, 1) such that with probability at least 1− δ,

y⊤
o Looyo ≤ (1 + t)

n

N

σmax(L)

σ+
min(L)

y⊤Ly, ∀y ∈ span(VK),

(5)

provided that

n

N
≥ 3

t2
max

1≤i≤N
∥V⊤

Kei∥22 ln
Å
2K

δ

ã
.

Proof. To begin, we notice that

y⊤
o Looyo = y⊤E⊤

o LooEoy

≤ ∥Loo∥2(y⊤E⊤
o Eoy)

≤ ∥L∥2(y⊤E⊤
o Eoy).

Let Xℓ :=
N
n V⊤

Kes(ℓ)e
⊤
s(ℓ)VK , whose sum is

X :=
N

n

n∑
ℓ=1

Xℓ =
N

n
V⊤

K

(
n∑

ℓ=1

es(ℓ)e
⊤
s(ℓ)

)
VK

=
N

n
V⊤

KE⊤
o EoVK .

Note the followings:

E[Xℓ] =
N
n V⊤

KE[es(ℓ)e⊤s(ℓ)]VK = 1
nV

⊤
KVK = 1

nI,

µmax := λmax (
∑n

ℓ=1 E[Xℓ]) = 1,

λmax(Xℓ) =
N
n λmax(V

⊤
Kes(ℓ)e

⊤
s(ℓ)VK) ≤ N

n maxi ∥V⊤
Kei∥22.

Then, the matrix Chernoff’s bound [10, Corollary 5.2] states
that for any δ ∈ (0, 1), with probability at least 1− δ,

∥X∥2 ≤ 1 + t, (6)

provided that

n

N
≥ 2

t2
max

1≤i≤N
∥V⊤

Kei∥22 ln
Å
2K

δ

ã
.

Observe that (6) implies

N

n
∥EoVKυ∥22 ≤ (1 + δ)∥υ∥22,

which means for any y ∈ span(VK),

N

n
∥Eoy∥22 ≤ (1 + δ)∥y∥22,

Therefore, with high probability, y⊤
o Looyo can be bounded as

y⊤
o Looyo ≤ (1 + δ)∥L∥2∥y∥22

≤ (1 + δ)∥L∥2∥(L1/2)†∥22∥L1/2y∥22

= (1 + δ)
n

N

σmax(L)

σ+
min(L)

y⊤Ly.

Proof of Theorem 1. Let us define some functions and terms:

Jf(L) :=
1
m

∑m
i=1 y

⊤
i Lyi, Jp(Lp) :=

1
m

∑m
i=1 y

⊤
o,iLpyo,i,

L⋆ := argminL∈LN
Jf(L), L⋆

p = argminLp∈Ln
Jp(Lp).

Furthermore, we note that L̂ := N
n E⊤

o L
⋆
pEo ∈ LN and

L̃p =
n

1⊤L⋆
oh1+Tr(L⋆

oo)

(
EoL

⋆E⊤
o +Diag(L⋆

oh1)
)
∈ Ln.

Denote C(t) := (1+t) n
N

σmax(L)

σ+
min(L)

. Applying Lemma 1 implies:

Jf(L
⋆) ≤ Jf(L̂)

=
1

m

m∑
i=1

N

n
y⊤
o,iL

⋆
pyo,i

=
N

n
Jp(L

⋆
p)

≤ N

n
Jp(L̃p)

=
N

1⊤L⋆
oh1+Tr(L⋆

oo)

(
Jp(EoL

⋆E⊤
o ) + Jp(Diag(L⋆

oh1))
)

≤ N

1⊤L⋆
oh1+Tr(L⋆

oo)
(C(t)Jf(L

⋆) + Jp(Diag(L⋆
oh1))) .

Overall, this gives the approximation bound

Jf(L
⋆) ≤ Jf(L̂) ≤

N

Tr(L⋆
oo) + 1⊤L⋆

oh1
(C(t)Jf(L

⋆)−O(ϵ))) .



Conversely, we can also bound that

Jp(L
⋆
p) ≤ Jp(L̃p)

=
n

1⊤L⋆
oh1+Tr(L⋆

oo)

(
Jp(EoL

⋆E⊤
o ) + Jp(Diag(L⋆

oh1))
)

≤ n

1⊤L⋆
oh1+Tr(L⋆

oo)
(C(t)Jf(L

⋆) + Jp(Diag(L⋆
oh1)))

≤ n

1⊤L⋆
oh1+Tr(L⋆

oo)

Ä
C(t)Jf(L̂) + Jp(Diag(L⋆

oh1))
ä

=
n

1⊤L⋆
oh1+Tr(L⋆

oo)

Å
C(t)

N

n
Jp(L

⋆
p) + Jp(Diag(L⋆

oh1))

ã
=

N

1⊤L⋆
oh1+Tr(L⋆

oo)
C(t)Jp(L

⋆
p)

+
n

1⊤L⋆
oh1+Tr(L⋆

oo)
Jp(Diag(L⋆

oh1)).

Taking L⋆
oh1 = O(ϵ) yields the bound

Jp(L
⋆
p) ≤ Jp(L̃p)

≤ N

Tr(L⋆
oo) + 1⊤L⋆

oh1
C(t)Jp(L

⋆
p) +

n

Tr(L⋆
oo) + 1⊤L⋆

oh1
O(ϵ).
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